
Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Utilizing High Entropy Stack Canaries for Locating
Function Return Addresses

...and...
Threads WTF? (Where’s The Frame?)

Matt Davis (@enferex)
mattdavis9@gmail.com

BSides PDX 2017

October 21, 2017

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Goal of Presentation

Introduce Execution Stacks

Introduce Thread Size “Problem”

Split Stacks

Stack Canaries

Entropy

1337 Hackz

turtle:

goto turtle;

”I love it when a plan comes together.”

–Hannibal Smith, A-Team

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Goal of Presentation

Introduce Execution Stacks

Introduce Thread Size “Problem”

Split Stacks

Stack Canaries

Entropy

1337 Hackz

turtle:

goto turtle;

”I love it when a plan comes together.”

–Hannibal Smith, A-Team

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

About Me

(void∗)0
IT DOESN’T MATTER

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

About Me

(void∗)0

IT DOESN’T MATTER

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

About Me

(void∗)0
IT DOESN’T MATTER

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Motivation

We can compromise stack integrity by first understanding how
stacks are created and then exploiting a security mechanism used
to protect stacks.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Background: Stacks

Background...

Stacks
Stacks
Stacks
Stacks
Stacks
Stacks
Stacks

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Background: Stacks

Background...
Stacks

Stacks
Stacks
Stacks
Stacks
Stacks
Stacks

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Background: Stacks

Background...
Stacks
Stacks
Stacks
Stacks
Stacks
Stacks
Stacks

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Stack Data Structure

Stacks are a last-in-first-out (LIFO) data structure that have two
operations:

push: Places an item on the top of the stack.

pop: Removes an item from the top of the stack.

All operations occur to the top if the stack.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Execution Stack

When a program is loaded into the system’s memory, a portion of
its memory space is used for stack.
A program maintains a stack of execution frames.

When a function is called, a new frame is “pushed” onto the
stack.

When a function returns, the top frame is “popped” off the
stack.

A stack frame, which is a temporary store, contains:

A function’s local variables.
Return address (return to caller, in caller’s frame).
Stack canary.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

What a Stack Frame Looks Like

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Execution Stack: Example

// Example i n C
vo i d baz ()
{
}

vo i d bar ()
{

i n t a=0xdead ;
i n t b=0x c a f e ;
baz () ;

}

vo i d foo ()
{

bar () ;
}

Assembly output o f Example
<baz>:

push %rbp
mov %rsp ,%rbp
nop
pop %rbp
r e t q

<bar>:
push %rbp
mov %rsp ,%rbp
sub $0x10 ,% r sp
$0xdead ,−0x8(%rbp)
$0xca fe ,−0x4(%rbp)
mov $0x0 ,%eax
c a l l q 27 <bar+0x20>
nop
l e a v e q
r e t q

<foo>:
push %rbp
mov %rsp ,%rbp
mov $0x0 ,%eax
c a l l q 38 <f oo+0xe>
nop
pop %rbp
r e t q

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

What About a Multi-Threaded Program?

Each thread has a portion of a process’ memory to maintain its
own stack.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Problem: Thread Sizes are Hard Coded

Each thread has its own stack space.

POSIX (pthread) default will vary, but can be 8MB of stack
space per thread.

This does not scale well.

Lots of threads consume lots of memory.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Solution: Split Stack

Split stack: Dynamically allocated stack space.

Languages like Go are designed to spawn many threads, but with
small stack spaces. They achieve lower overhead by using a “split
stack” stack model.

The function prologue checks the current thread’s stack
boundary.

If the function-to-be executed requires more memory than the
thread has available:

Allocate a new stack space.
Copy the current frame to the new memory.
Update the thread’s stack pointers.
Resume the function.
When the function completes, reclaim the memory.
Return to the caller.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

How Thread Stacks Look

Identifying thread and split-stack data from /proc filesystem.
Before
55 ae25540000−55ae25543000 r−xp 00000000 08 :01 1182693 a . out
55 ae25742000−55ae25743000 r−−p 00002000 08 :01 1182693 a . out
55 ae25743000−55ae25744000 rw−p 00003000 08 :01 1182693 a . out
55 ae272a6000−55ae272c7000 rw−p 00000000 00 :00 0 [heap]
7 fed66f77000−7fed67134000 r−xp 00000000 08 :01 398918 l i b c −2.24. so

After
55 ae25540000−55ae25543000 r−xp 00000000 08 :01 1182693 a . out
55 ae25742000−55ae25743000 r−−p 00002000 08 :01 1182693 a . out
55 ae25743000−55ae25744000 rw−p 00003000 08 :01 1182693 a . out
55 ae272a6000−55ae272c7000 rw−p 00000000 00 :00 0 [heap]
7 fed64b76000−7fed66 f77000 rw−p 00000000 00 :00 0 <−−−−− THREAD or SPLIT−STACK MEMORY
7 fed66f77000−7fed67134000 r−xp 00000000 08 :01 398918 l i b c −2.24. so

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Pop Quiz, Hot Shot.

What the heck are
these pages?

55b2998c1000-55b2998c2000 rw-p 00001000 08:01 6356756 a.out

55b29a147000-55b29a168000 rw-p 00000000 00:00 0 [heap]

7ffba9898000-7ffba9899000 ---p 00000000 00:00 0 <--- ???

7ffba9899000-7ffbaa099000 rw-p 00000000 00:00 0 <--- ???

7ffbaf09c000-7ffbaf09d000 rw-p 00025000 08:01 7080132 /usr/lib/ld-2.26.so

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Pop Quiz, Hot Shot.

What the heck are
these pages?

55b2998c1000-55b2998c2000 rw-p 00001000 08:01 6356756 a.out

55b29a147000-55b29a168000 rw-p 00000000 00:00 0 [heap]

7ffba9898000-7ffba9899000 ---p 00000000 00:00 0 <--- ???

7ffba9899000-7ffbaa099000 rw-p 00000000 00:00 0 <--- Possibly thread stack space.

7ffbaf09c000-7ffbaf09d000 rw-p 00025000 08:01 7080132 /usr/lib/ld-2.26.so

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Pop Quiz, Hot Shot.

What the heck are
these pages?

55b2998c1000-55b2998c2000 rw-p 00001000 08:01 6356756 a.out

55b29a147000-55b29a168000 rw-p 00000000 00:00 0 [heap]

7ffba9898000-7ffba9899000 ---p 00000000 00:00 0 <--- Guard page (mprotect with (PROT_NONE))

7ffba9899000-7ffbaa099000 rw-p 00000000 00:00 0 <--- Possibly thread stack space.

7ffbaf09c000-7ffbaf09d000 rw-p 00025000 08:01 7080132 /usr/lib/ld-2.26.so

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Stack Protection and Sentinel Species

Program execution is driven by the stack, because caller return
addresses make up part of the stack.

Caller and callee relationship is witnessed at runtime by the
pushing and popping of stack frames.

Stacks can get corrupted (bad use of function local variables).

For example: Copying too much data into a variable, and
overwriting useful portions of the stack.

Stacks can be attacked by having program input overwrite the
return address of a function to point to some malware’s
payload.

Stack canaries, or cookies, can help detect corrupted or
compromised stacks and terminate the process immediately.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Stack Canaries

A stack canary is a known value placed onto a stack to ensure the
integrity of the stack.

Canaries can detect stack-overflow compromises.

GCC Stack Smashing Protection (libssp) places a random
word-size value onto the stack in the function prologue.

The value is checked during function epilogue.

If the value is not the original, then the stack is corrupted and
cannot be trusted.

The return address on the stack might have been compromised
by malware. (Stack overflow bug).

The canary should be unpredictable, to prevent malware
authors from crafting code that overflows the stack with an
expected canary value.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

What a Canary Looks Like

gcc canary.c -fstack-protector-all -S

canary.c

i n t f o o (v o i d)
{

r e t u r n 0 x d e a d b e e f ;
}

canary.s

f o o :
pushq %rbp
movq %rsp , %rbp
subq $16 , %r s p
movq %f s : 4 0 , %r a x
movq %rax , −8(%rbp)
x o r l %eax , %eax
movl $0xdeadbeef , %eax
movq −8(%rbp) , %r d x
xorq %f s : 4 0 , %r d x
j e . L3
c a l l s t a c k c h k f a i l

. L3 :
l e a v e
r e t

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Entropy based Stack Canaries

Stack canaries are often generated via some pseudo-random
number generator.

This reduces the probability of an attacker guessing a canary
to successfully overwrite (to thwart detection).

GCC will setup function’s prologue and epilogue to store and check
the function’s stack canary.

The ELF loader, ld (glibc source) is responsible for getting a
random value every time the program starts.

This value is generated in the kernel, and passed to ld via an
auxiliary ELF vector.

/∗
∗ Genera te 16 random by t e s f o r u s e r s p a c e PRNG s e ed i n g .
∗/

ge t r andom by te s (k r and by t e s , s i z e o f (k r a n d b y t e s)) ;
u r a n d b y t e s = (e l f a d d r t u s e r ∗)

STACK ALLOC(p , s i z e o f (k r a n d b y t e s)) ;
i f (c o p y t o u s e r (u r and by t e s , k r and by t e s , s i z e o f (k r a n d b y t e s)))

r e t u r n −EFAULT ;

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Using Canaries to find Thread Return Addresses

Can a canary, of maximum entropy, be used to find a return
address?

(Yes!)

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Using Canaries to find Thread Return Addresses

Can a canary, of maximum entropy, be used to find a return
address?

(Yes!)

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Using Canaries to find Thread Return Addresses

Can a canary, of maximum entropy, be used to find a return
address?

(Yes!)

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Shannon Entropy

Entropy: Average amount of information for
a given event.

H = −
∑
i

pi logb pi

Where pi : Proportion of data i occurring.

For our purposes we count the byte
frequency, not bit frequency.

Ĥ =

TotalBytes∑
i=0

Frequency(bytei) log2(Frequency(bytei))

https://en.wiktionary.org/wiki/Shannon_entropy

https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

https://en.wiktionary.org/wiki/Shannon_entropy
https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Shannon Entropy

Entropy: Average amount of information for
a given event.

H = −
∑
i

pi logb pi

Where pi : Proportion of data i occurring.

For our purposes we count the byte
frequency, not bit frequency.

Ĥ =

TotalBytes∑
i=0

Frequency(bytei) log2(Frequency(bytei))

https://en.wiktionary.org/wiki/Shannon_entropy

https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

https://en.wiktionary.org/wiki/Shannon_entropy
https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Shannon Entropy

Entropy: Average amount of information for
a given event.

H = −
∑
i

pi logb pi

Where pi : Proportion of data i occurring.

For our purposes we count the byte
frequency, not bit frequency.

Ĥ =

TotalBytes∑
i=0

Frequency(bytei) log2(Frequency(bytei))

https://en.wiktionary.org/wiki/Shannon_entropy

https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

https://en.wiktionary.org/wiki/Shannon_entropy
https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Maximum Entropy

Maximum Entropy: We use a variation of Shannon’s Index 1 ,
based off of Shannon’s Entropy formula.

Instead of looking at individual bits, we look at a series of 8 bytes
(word size). If each byte in the word is a different value, then we
say that word has Maximum Entropy.

1
https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Maximum Entropy Words

A look at my system’s memory (/proc/<pid>/maps)

Only looking at unnamed memory mapped regions.

1 word is 8 bytes.
784700416 total words scanned.
4337624 words of maximum entropy found.
4MB of 748MB had maximum entropy.
0.55% of words have maximum entropy.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Heatmap

Each block represents a word (8 bytes). Words of all zeros are removed.
This follows red-orange-yellow-green-blue-indigo-violet-darkviolet, where red
indicates every byte in the word is different and dark violet indicates that 1 byte
is different. Note that this was from a differnt run than the previous slide.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Canary Hackery

Scan /proc/<pid>/maps for areas of thread memory.

For each memory mapped page:
1 Scan word-size chunks.
2 If a word has maximum entropy, look 2 words from it∗.
3 If the value 2 words from the high-entropy word can exist

within a memory area from /proc/<pid>/maps, assume it is a
return address.

4 Turtles.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Canary Hackery

Scan /proc/<pid>/maps for areas of thread memory.

For each memory mapped page:
1 Scan word-size chunks.
2 If a word has maximum entropy, look 2 words from it∗.
3 If the value 2 words from the high-entropy word can exist

within a memory area from /proc/<pid>/maps, assume it is a
return address.

4 Turtles.

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Done!

asm volatile (”ret;\n”);

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Resources (1 of 2)

POC:
https://github.com/enferex/homingcanary

Example dynamic stack:
https://github.com/enferex/customstack

Shannon Entropy Equation:
https://en.wiktionary.org/wiki/Shannon_entropy

Shannon Index:
https://en.wikipedia.org/wiki/Diversity_index#Shannon_index

Call stack graphic:
https://en.wikipedia.org/wiki/Call_stack#/media/File:Call_stack_layout.svg

Yes image:
https://en.wikipedia.org/wiki/Yes_(band)#/media/File:Yes_concert.jpg

Claude Shannon image:
By Jacobs, Konrad - http://owpdb.mfo.de/detail?photo_id=3807, CC BY-SA 2.0 de,
https://commons.wikimedia.org/w/index.php?curid=45380422

https://github.com/enferex/homingcanary
https://github.com/enferex/customstack
https://en.wiktionary.org/wiki/Shannon_entropy
https://en.wikipedia.org/wiki/Diversity_index#Shannon_index
https://en.wikipedia.org/wiki/Call_stack#/media/File:Call_stack_layout.svg
https://en.wikipedia.org/wiki/Yes_(band)#/media/File:Yes_concert.jpg
http://owpdb.mfo.de/detail?photo_id=3807
https://commons.wikimedia.org/w/index.php?curid=45380422

Introduction Background Split-Stacks Stack Canaries Attack: Using Stack Canary End

Resources (2 of 2)

GCC Source (https://gcc.gnu.org):

Setup split-stack prologue:
gcc/config/i386/i386.c:ix86 expand split stack prologue()

morestack logic:
libgcc/config/i386/morestack.S
libgcc/generic-morestack.c

Linux Kernel Source (https://kernel.org)

GNU libc Source (https://www.gnu.org/software/libc/)

https://gcc.gnu.org
https://kernel.org
https://www.gnu.org/software/libc/

	Introduction
	Background
	Split-Stacks
	Stack Canaries
	Attack: Using Stack Canary
	End

