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Abstract

Memory management is a complicated task. Often the language itself ex-

poses such complexities directly to the programmer. For instance, languages

such as C or C++ require the programmer to explicitly allocate and reclaim

dynamic memory. This opens the doors for many software bugs (e.g . memory

leaks and null pointer dereferences) which can cause a program to prema-

turely terminate in error. Automated techniques of memory management

were introduced to relieve programmers from managing such complicated as-

pects. Two automated techniques are garbage collection and region-based

memory management. The more common garbage collection is primarily

driven by a runtime analysis (e.g . scanning live memory and reclaiming the

bits that are no longer reachable from the program), where the less com-

mon region-based technique performs a static analysis during compilation

and determines program points where the compiler can insert memory re-

claim operations. Both automated options have their drawbacks, in the case

of garbage collection it can be computationally expensive to scan memory

at runtime, often requiring the program to halt execution during this stage.

Region memory often requires objects to remain resident in memory longer

than garbage collection, even though such objects might not be needed.

This thesis investigates the alternative and less common form of auto-

mated memory management within the context of the relatively new imper-

atively styled language Go. We investigate both techniques and a way of

combining the two in hopes of achieving the benefits of a combined system

without the drawbacks that each automated technique provides alone. We

finally investigate the sequential process communication aspect of Go (CSP)

and how we can introduce a region-based memory management system that

operates within a concurrent context.

iii



iv



Declaration

This is to certify that:

• the thesis comprises only my original work towards the PhD except

where indicated in the Preface,

• due acknowledgement has been made in the text to all other material

used,

• the thesis is fewer than 100,000 words in length, exclusive of tables,

maps, bibliographies and appendices OR the thesis is [number of words]

as approved by the Research Higher Degrees Committee.

Matthew Ryan Davis

v



vi



Preface

This thesis is the result of over three years of work and collaboration with

some of the brightest people I have ever worked with, my advisers. Our col-
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laborations between myself and advisers. These two chapters derive from our

publications to the ACM SIGPLAN Workshop on Memory Systems Perfor-

mance and Correctness 2012 and 2013 respectively. Chapter 6 was extracted

from our first publication and extended in this thesis, this was never in my

original draft. My original drafts went through numerous rewrites by my

advisers, and were expanded to add ideas that never made the initial drafts,

such as handling goroutines which has now become the body of Chapter 6.

This research process has been an incredibly rewarding experience, and I
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Chapter 1

Introduction

Science is the belief in the ignorance of experts.

Richard Feynman

D
eveloping software is a challenging task. Sloppy coding, the stress

of fast development (deadlines), language choice, and dealing with

legacy code are all complicating aspects of the software develop-

ment process. Further complicating matters is simply the fact that program-

mers are human, and thus are flawed and can easily make mistakes when

writing programs. Such is especially the case when the language they are

coding in requires the programmer to manage additional resources that are

orthogonal to the problem at hand. One such resource that programmers of-

ten find themselves having to manage is the use of the system’s memory. This

task often requires the programmer to keep track of memory allocations, data

types, and memory reclamation. Keeping track of such information presents

an additional burden to the programmer, and increases the probability of

bugs in the resulting program.

If memory is improperly managed, the software can crash or produce in-

valid output, compromising the integrity of the software solution. While it

is annoying to have a program such as a text editor or web browser crash, in

mission critical environments (e.g . healthcare or aviation) a software failure

can have serious consequences. For instance, on January 22, 2004 NASA’s

Mars rover, Spirit, suddenly became non-responsive to its operator’s com-

mands [64]. This was the result of a memory limitation. Simply, the system

responsible for manipulating the rover ran out of its main memory (128M of
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RAM), leaving Spirit not responding to NASA’s commands. The solution

was to simply have technicians remove unneeded files from the rover’s sys-

tem. If improperly managed memory can affect NASA, surely it can have an

impact within other mission critical contexts.

How a programmer manages memory depends on the programming lan-

guage used. Many languages (e.g . C, C++) require the programmer to re-

quest memory and also reclaim that memory at a later time. But humans

are notoriously bad at this, and the result is unstable programs that crash

or exhaust the system’s memory resources (e.g . memory leaks).

One way memory complicates a programmer’s job is that it can be diffi-

cult to establish the lifetime of an allocation. Often memory is requested in

one function for use by another function. Moreover, such an allocation can be

reclaimed in a completely different function. This disjunction between allo-

cation and reclamation sites means that the programmer must employ global

reasoning when coding. This idea contrasts with local reasoning, whereby

the programmer can assume that memory is not needed outside of the func-

tion it has been allocated within. Global reasoning can be more taxing for

the programmer to reason about, which can result in error-prone programs.

The programmer must be fully aware of all functions his program calls (di-

rectly or indirectly), and if they require any memory associated with returned

values to be reclaimed. This means that any functions not written by the

programmer must explicitly state, in documentation, the need for memory

reclaim. Global reasoning is also required when the programmer makes ex-

plicit requests for memory, also known as dynamically allocated memory, and

then passes that memory to other functions. Dynamic memory can be re-

turned by the requesting function and passed as data to other functions. In

other words, dynamic memory can escape the function it was created within.

Therefore, dynamic memory can have a global context. This idea contrasts

with an easier form of memory management, automatic memory. This form

of memory is often implemented as a stack in the process’ memory space

2



which grows and shrinks during execution. Such memory requires the pro-

grammer to apply simple local reasoning. Stack memory never escapes the

function it is allocated within (it is local), and is almost always managed

implicitly by the compiler when the program is being compiled. Stack mem-

ory is linear in lifetime, meaning that it is often allocated at the start of the

function (implicitly by the compiler) and the memory is reclaimed at the

end of the function. In contrast, dynamic memory is not always localized,

programmers must determine when certain data associated with a reference

r is valid and when it should be reclaimed. Once memory is reclaimed, the

programmer must also ensure that it will never be accessed again via r, as

that memory might have been reused for another value and have completely

different value semantics.

Automatic memory management aims to reduce the programmer’s bur-

den and increase software reliability. For instance, the Java programming

language does not require the programmer to release memory, instead the

language and its accompanying runtime environment use garbage collection

(GC) to detect when an object is no longer needed. GC is a runtime oper-

ation which works by scanning the program’s memory to identify allocated

objects that can be reached from the live objects (the roots). Any allocated

object that can be reached from a root must not be reclaimed, as doing such

would remove an object that might be used later in the program’s execu-

tion. However, unreachable objects will have no role to play in the rest of

the program’s execution and therefore can have their memory reclaimed by

the garbage collector. GC is not always an ideal solution, as such a runtime

analysis can increase execution times.

Due to the additional cost of running a garbage collector, some people

might argue that this often non-deterministic task of memory management

via GC is not ideal for system level programming, including real-time sys-

tems. System level languages (e.g . C, C++) offer much programming power

to the developer, often at the cost of reducing program safety (e.g . they
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present the programmer with additional resource management tasks). These

languages are commonly used for driver writing, operating system kernel de-

velopment, and other low-level computation tasks. Arguably, these are also

the same applications that need the highest level of safety, including memory

safety.

Surely we can do better than this. Can we have a system level language

that is both memory safe and efficient? In 2009 Google introduced the Go

programming language that aimed at both being memory safe and efficient

at the system level. As with Java, Go provides a GC runtime environment.

Thus, a large portion of the memory safety of Go arises from the fact that the

language relieves the programmer of the burden of making decisions on the

lifetime of memory allocations, which is handled by the collector. However,

this comes at the price of a runtime-based solution for memory manage-

ment. But there is an alternative to GC, region-based memory management

(RBMM). Instead of waiting until runtime to locate unreachable allocations

for reclaim, an RBMM system works its magic by performing a static analy-

sis of the program’s source code and inserts memory management operations

during compilation. This avoids the overhead generated by runtime memory

scans that garbage collectors require.

This thesis investigates the Go programming language and answers the

following questions:

• How much GC can we eliminate by performing a static analysis over

the program’s source code and using an alternative form of automatic

memory management, RBMM?

• Can we extend an existing language, Go, and add RBMM without

the programmer having any additional resource management tasks to

consider?

• Can we create a automatic memory management system that avoids

the negatives of RBMM and GC while attaining the benefits of both

4



systems?

• Can we introduce an RBMM system for a concurrent language?

This thesis contributes an investigation of adding a fully-automatic RBMM

system to the existing Go language. We introduce ways of handling paral-

lelization and compile-time automatic memory management. We also intro-

duce a combination of RBMM and GC whereby we do not have to perform

a complete scan of all of the variables in the program.

In Chapter 2 the Go programming language is introduced. This chapter

is not to be an all inclusive diatribe about every aspect of the language’s fea-

tures, rather it provides the reader with enough background to understand

the concepts and examples presented later in this thesis. Chapter 3 provides

a background on memory management including GC and RBMM. Chapter 4

presents our initial investigation into adding RBMM to a subset of the Go

language. Chapter 5 looks at combining RBMM and GC. Chapter 6 investi-

gates enabling RBMM within a concurrent context. Chapter 7 is a literature

review of related work. Chapter 8 concludes this thesis.
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Chapter 2

Go Programming Language

Simplicity is a great virtue but it requires hard

work to achieve it and education to appreciate it.

And to make matters worse: complexity sells

better.

Edsger W. Dijkstra

T
his chapter introduces the Go programming language which is used

throughout this thesis as a unique domain for exploring the concepts

of memory management. The language is not covered in its entirety;

however, enough background is provided in this chapter so that the examples

and language-specific topics discussed later make sense. This thesis uses code

that is compatible with version 1 of the language. The reader is assumed to

be loosely familiar with the syntax presented in languages such as C/C++.

2.1 Introduction

Go is a general purpose system level programming language created by

Google in 2007 and released to the public in November of 2009 under an

open source license [57]. The language benefits from an unambiguous pro-

cedural syntax, similar to C, which facilitates quick development and eases

analysis [24]. Go is also known for its speedy compilation times which is a

property of its syntactic structure and how imported libraries (also called

modules) are treated. The language provides a strong and statically typed

syntax that does not require cumbersome code annotations. Duck typing is
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another feature of the language which allows programmers to create their

own data types and interfaces.

Go utilizes a garbage collector to aid memory safety. The collector relieves

programmers of the burdensome task of managing the reclamation of mem-

ory, which would otherwise compromise program safety due to improperly

used resources by programmers, such as memory leaks.

Programs written in Go can utilize simplistic and safe parallelization con-

cepts to enhance application scalability. Functions are first-class objects,

which can be used for exception handling, or for post-function cleanup (e.g.

closing file handles if a function returns early).

The Go 1.0 language comes with a suite of libraries providing program-

mers with a variety of utilities: such as cryptographic, networking, and

http/web related functions.

2.2 Go Syntax

The syntax of Go is very similar to that of traditional imperative languages

like C and C++. The syntax is non-ambiguous and non-obtrusive, while

still maintaining enough information for the compiler to perform a strong

typecheck of the source code.

2.2.1 Declarations and Assignments

The variable and function declaration syntax is similar to C’s, but with the

type and identifier names reversed. This order can ease analysis for compilers

and other parsing utilities, as well as remove declaration ambiguity. For

instance, the following block of code illustrates a basic function in Go.

In this example we declare a function AddTheUniverse that has one for-

mal parameter, x, and returns an integer value. If the declaration is read

aloud left to right, the meaning becomes clear to the reader: “Function Ad-

dTheUniverse takes x as an integer for input and returns an integer.” In the
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func AddTheUniverse ( x int ) int {
un ive r s e := 42
return x + un ive r s e

}

body of this function we declare a variable universe which has the value of

42. This is a mutable variable. Similarly, we could have declared universe as

var universe int. Since the compiler can infer the type of the variable uni-

verse we can use the shorter syntax which combines variable declaration and

assignment :=. The latter is very useful for declaring temporary variables

that only need scope within a block of a function, such as iterators in loop

constructs:

for i :=0; i <100; i++ {

// Do s t u f f

}

In the latter example, i only has scope within the loop, use of i outside

the loop will result in a compile-time error.

To further illustrate the simplicity of the declaration syntax, consider a

more complicated case:

var x [ ] ∗ Thing

Again, if this line is read left-to-right the meaning becomes clear: “vari-

able x is an array containing pointer-toThing objects.”

Additional syntax will be covered in the following sections.

2.3 Modules and Imports

Go comes with a large suite of additional libraries, also called modules. There

are no source include files, instead the programmer expresses that they want

a module included in their program via the import syntax. This speeds up
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package main
import ‘ ‘ os ’ ’
func main ( ) {

f i l e , e r r := os . Open( ‘ ‘ my f i l e . txt ’ ’ )
}

compilation time since there is no need to transitively parse a header file and

all of the header file’s included headers.

The compiler will only permit functions, types, and global variables de-

clared public, as being accessible via import. To declare something private,

the global variable identifier, type, or function name must begin with a cap-

italized first character.

Modules are used in the program by prefixing the global variable, type,

or function that the module provides with the module name.

In this example we import the module os, and call the public routine it

provides, Open. Modules are created by using the package statement as the

preamble in the source file. In the case of the “os” module, all of the source

files that make up this module begin with the statement: package os. The

main package is used for creating an executable and not a library/module.

2.4 Types

2.4.1 Common Primitives

Go has a set of primitive data types to represent boolean, integer, floating

point, and complex number information. Except for bools, these types can

be suffixed with their bit size (either 8, 16, 32, 64). For instance, int8 rep-

resents a 1-byte integer, uint16 represents a 16-bit unsigned integer, float64

represents a double (64-bit) wide floating point variable, and complex128

represents a complex number with real and imaginary parts consisting of 64

bits each. There is no char data type to represent a 1-byte generic value,
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rather that is what the byte data type is for. While the language developers

avoided ambiguity between float and double sizes, by not defining a double

type and forcing the programmer to use a more meaningful type-name con-

sisting of bit-size (float32 or float64), they did not avoid this ambiguity for

integers. While integer types can be defined with a suffix, as described above,

they can also exist without the size suffix, such as: int and uint. These types

are either 32 or 64-bits in size, based on the machine’s architecture. The

specification does not explicitly mention that their lengths are based on ar-

chitecture, rather that an int is the same size as a uint and that the latter is

either 32 or 64 bits in size [22]. The uintptr represents an unsigned integer

long enough to store a pointer (address).

2.4.2 Pointers

The Go language also permits pointer variables, with one caveat: no pointer

arithmetic. Pointers can alias the same piece of data; however, a pointer’s

value cannot be manipulated based on algebraic operators. This feature

provides type safety which prevents the pointer from accessing data that

might be of another type, or dangling, both of which could result in invalid

memory access.

x := 42

y := &x

println ( ‘ ‘The value o f what x po in t s to i s : ’ ’ , ∗y )

In the above example, x is declared as a variable holding the integer value

of 42. y is then declared as being a pointer to x. The * operator is used to

dereference y and obtain the value that it points to, 42. In C the programmer

can manipulate what y points to via pointer arithmetic such as: y = y + 1;.

This is not permitted in Go, as it would void type safety.

11



2.5 User Defined Types

The type keyword is used for either creating structures, interfaces, or redefin-

ing a type. Go does not provide classes or inheritance, rather the programmer

can simply create structures and utilize interfaces. If any structure type has

all of the methods defined by an interface, then that structure type is said

to facilitate that interface.

To begin with, the type keyword can be used to redefine a type.

type po int int [ 2 ]

The example above defines a type called point which is identical to an integer

array of two elements.

2.5.1 Structure Types

Structures consist of just field declarations. Methods for the type are declared

and defined as their own functions, and are not specifically mentioned in the

body of the struct definition. A leading capital-letter in the type name

and fields denote public access for the type/fields. This is used to support

information hiding in a module.

There is only one selector, “.”, used for accessing fields. Unlike C, the

indirection operator, “->”, is not used to reference a value from a pointer,

instead “.” is always used.

var x Thing
var y ∗Thing
y = &x
t o t a l := x . someField + y . someField

In this case the someField field of x and y is obtained. The compiler

knows if the variables are pointers or not. This relieves the programmer

from having to remember such information.
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The following example defines a Cat type that has an age field, which is

private.

type Cat struct {
age int // p r i v a t e age f i e l d

}

We extend the capability of our Cat type by defining a method that

Cat has, MatingCall, below. This MatingCall method can be called on any

func ( c ∗Cat ) MatingCall ( ) {
println ( ‘ ‘ Pur r r r r ’ ’ )

}

func main ( ) {
g a r f i e l d := new(Cat )
var morr i s Cat

g a r f i e l d . MatingCall ( )
morr i s . MatingCall ( )

}

pointer and non-pointer instances of the Cat type. When the method is

invoked, it will have a pointer to the Cat instance called c. The com-

piler is smart enough to know that even though morris is not a pointer,

its address will still be passed to the MatingCall method when the mor-

ris instance invokes it. Similarly, if the method were to be declared as

func (c Cat) MatingCall() with c no longer of pointer type, the compiler

will produce code having the same effect as a call-by-value function call.

2.5.2 Interfaces

Interfaces provide a duck-typed syntax for allowing multiple types to be

treated as a more generic type. An interface declaration just specifies the
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function prototypes that a member of the interface must fulfill. If a type has

all of the methods defined by an interface, then that type is a member of the

interface. In other words, if it looks like a duck and walks like a duck, it is

probably a duck.

type Cat struct {
age int // p r i v a t e age f i e l d

}

type Duck struct {
string name // p r i v a t e name f i e l d

}

type Animal interface {
MatingCall ( )

}

func (d ∗Duck) func MatingCall ( ) { println ( ‘ ‘Quack ! ’ ’ ) }
func ( c ∗Cat ) func MatingCall ( ) { println ( ‘ ‘ Purrr ! ’ ’ ) }

func Wild ( a ∗Animal ) {
a . MatingCall ( )

}

func main ( ) {
var th ing ∗Animal

th ing := new(Cat )
Wild ( th ing )

th ing = new(Duck)
Wild ( th ing )

}

Both Cat and Duck types are members of the Animal interface. There-

fore, functions and pointers can generically refer to an Animal instance in-
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stead of the specific type. The Wild function operates on any object that

satisfies the Animal interface. This function calls the MatingCall interface-

defined method on them. The result of running this example would be

“Purrr!” and then “Quack!”.

The empty interface, interface{}, is the most generic means of working

with types in Go. All primitive and user defined types fulfill the empty

interface type, and this is how the println built-in routine is defined. It can

accept any type it is passed; however, the compiler will reject types it does

not know how to print.

2.6 Container Types

Go provides a series of built-in container types for use by the programmer.

This section discusses these types.

2.6.1 Arrays

An array represents a series of objects or primitives in Go. Interfaces, includ-

ing the empty interface, can make up the elements of an array. Arrays are

declared statically, thus the length must be a constant. Go performs bounds

checking on arrays at both compile and run times. Since Go is call-by value,

arrays can impart quite a memory overhead, since the passing of an array to

a function will require that the program copy the entire contents of the array

to the formal parameter in the callee.

In this example 55 integer values are copied from the caller, main, to the

callee, processArray. Any mutations to the elements of the array by the callee

will never be seen by the caller. For somebody familiar with C, where arrays

are passed by address, this may come as a surprise. Passing an entire array

by value is both computationally expensive and memory expensive, since the

CPU must perform a copy operation(s) to duplicate the data used by the
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func processArray ( va l s [ 5 5 ] int ) {
// Use the v a l s array

}

func main ( ) {
var myarray [ 5 5 ] int
processArray (myarray )

}

array. A solution to this issue is to either use slices, which are automatically

passed by reference, or to pass a pointer to the array.

2.6.2 Slices

Unlike arrays, slices are instantiated dynamically either through the make

keyword or by converting an array to a slice. A slice can be thought of as a

vector: an array which can shrink or grow (via the append() built-in function)

at runtime.

func p r o c e s s S l i c e ( va l s [ ] int ) {

// Use the v a l s s l i c e

}

func main ( ) {

mys l i ce := make ( [ ] int , 55)

p r o c e s s S l i c e ( mys l i c e )

}

This example declares a slice containing 55 integer elements. Since slices

are passed by reference, their associated overhead is low compared to the

copy-by-value that an array would impart. Portions of slices are still consid-

ered a slice and are specified via the “:” operator: where the value to the

immediate left of the operator represents the starting index, and the value
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immediately to the right represents the ending index exclusive. A slice’s

range upper bound is exclusive, thus the value at the last index is not in-

cluded. For instance, a slice s[m:n] represents a sub-sequence of the values

in array or slice s starting at index m and ending just before index n. Since

ranges are exclusive, the values would span the interval [m, n), or contain

the values from m to n-1.

var myarray [ 5 5 ] int
mys l i ce := make ( [ ] int , 55)
f i r s t F i v e := mys l i c e [ : 5 ]
s k i pF i r s t S i x := mys l i c e [ 6 : ]
middle := mys l i c e [ 1 0 : 2 0 ]
a r rayToS l i c e := myarray [ : ]

The last line in the previous example shows how an array can be converted

to a slice by just passing empty operands for the “:” operator. If the operands

were specified, the range of values would have been converted into a slice,

representing a sub-sequence of the array.

2.6.3 Maps

Maps are another built-in data container type provided by Go. The keys

and values can be any primitive, user defined type or interface. This type

provides a one-to-one mapping from the key to the data/value. Like slices,

maps are automatically passed by reference, therefore there is no need to

prefix a map-type argument with the address of “&” operator.

var mymap map[ int ] string

g r e e t i n g s := map[ int ] string {1 : ”He l l o ” , 2 : ”Yo”}

c o l o r s := make(map[ f loat32 ] string , 100)

The first line in the example above declares a map that maps integers to

strings. The map is declared as having a key of type int and a value of
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type string. The second line declares and defines a map with values. The

third line shows the creation of a map using the make allocator to create an

initial map that can hold 100 keys and their values. Except for the example

in the first line, the runtime will automatically extend the map if a value is

added to a key that was not previously stored in the map. This exception

results from the fact that the GCC compiler will actually create both the

maps greetings and colors dynamically, even though the programmer never

created greetings via make. Since greetings is initialized, it can be extended.

On the other hand mymap is never dynamically allocated. The compiler

will actually create mymap as a pointer to nil. Therefore, it never has any

initial data, and cannot be extended. If mymap is set to alias greetings

via assignment, mymap = greetings, then it can be extended following that

assignment.

2.7 Memory Management

This section covers the dynamic memory allocation built-ins provided by the

Go language.

2.7.1 New and Make Allocators

Go provides two keywords for allocating dynamic memory (similar to malloc

in C), namely new and make. To create a pointer to memory representing a

particular data type, the new keyword is used.

mypointer := new( Thing )

The above declaration creates a pointer to an item of type Thing. Go will

zero-initialize all allocations, so there is no need to clear the returned allo-

cated data.

The make keyword is an allocation built-in function that is used for dy-

namically allocating instances of slices, maps, or channels. make provides
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three parameters. The first parameter specifies the data type to create, the

second specifies a count, or number of elements, that the type can contain,

and the third specifies a capacity reserving additional room for the elements.

The capacity parameter is optional in all cases, and does not limit the bound

of the data type. Both the count and capacity parameters are optional for

channel types, which will be introduced later. Container types allocated with

make can grow past their initial capacity to hold more data.

Garbage Collection

The Go 1.0 release provides a stop-the-world parallel mark-sweep garbage

collected runtime environment. Programmers do not need to worry about

deallocating memory after calling new ormake since the environment will au-

tomatically release memory that is no longer used by the program. Garbage

collection and Go-specific collection is discussed in more detail later; how-

ever, it should be mentioned that the Go development team is working on

a more efficient collector, as the one provided by the 1.0 release is relatively

basic.

2.8 Control Flow

Go provides a variety of mechanisms to alter the control flow of a program.

Here we list the standard mechanisms. Section 2.10 discusses a Go-specific

excape mechanism.

2.8.1 If Else

The if/else constructs in Go is similar to C’s.
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i f x == 42 {
println ( ‘ ‘ This sentence i s not e x c i t i n g ! ’ ’ )

} else i f x == 43 {
println ( ‘ ‘ This sentence i s fa l se ’ ’ )

} else {
println ( ‘ ‘ This i s a sentence ’ ’ )

}

2.8.2 Switch

Switch statements in Go provide a way to branch across multiple conditions.

Unlike C, the case statements in the switch can be expressions. If the case

matches or the case-expression is true then the body of that case is executed.

switch x := getUniverseValue ( ) ; {
case x > 42 :

println ( ‘ ‘The un ive r s e i s expanding ’ ’ )
case x < 42

println ( ‘ ‘The un ive r s e i s c on t r a c t i ng ’ ’ )
case x == 42 :

println ( ‘ ‘ Just r i g h t ! ’ ’ )
fallthrough

default :
println ( ‘ ‘The un ive r s e i s a hologram . ’ ’ )

}

Also unlike C, cases in the switch do not require a break. By default, cases

do not fallthrough. Instead, if a fall through is desired, the programmer must

use the fallthrough keyword.

2.8.3 Loops

The only looping construct, aside from using goto or recursion, is the for

loop. The range keyword simplifies looping from the built-in container types
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(slices and maps). range produces two values, an index number, and value.

for i , v := range ( mys l i c e ) {

// Do s t u f f

}

The i variable is the iteration number, which can be used as an index

into the slice, and the v variable is a copy of the value contained in the array

at the index i.

A more traditional loop with a condition can be supplied, as similar to

while loops in C.

for i < 1000 {

// Perform magic

}

As with C, a for loop in Go can also define initialization, termination

condition and iteration.

for i :=0; i <1000; i++ {

// Perform magic

}

A for without a terminating condition can act as an infinite loop. break

statements can be issued to exit loops, and continue statements can return

execution to the beginning of a loop at the next iteration.

2.9 Higher-Order Functions

Functions in Go are first class objects. They can be passed between functions

as arguments. In the following example, the calculate function takes another

function as input. That input function takes two int values (a,b) and returns

an int. The function main creates a function add which sums two values,

and constructs a slice containing three values. The calculatte routine is then
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func c a l c u l a t e ( f func ( a , b int ) int , v a l s [ ] int ) int {
t o t a l := 0
for i :=0; i<len ( va l s ) ; i++ {

t o t a l = f ( t o ta l , v a l s [ i ] )
}

return t o t a l
}

func main ( ) {
add := func ( a , b int ) int { return a + b }
va l s := [ ] int {200 , 300 , 400}
c a l c u l a t e ( add , va l s )

}

called to compute a running sum over the values using the function it was

passed for computation, f.

Anonymous functions with state (closures) can be created as well. Ex-

amples of such appear in the next section on the defer statement.

2.10 Defer

A defer statement can be a function or block of code that is executed just

before the function it is defined within returns, but after the return expres-

sion has been evaluated. Deferred statements are always executed, even if the

function returns early. This can be very handy in cases such as file input/out-

put where a function opens a handle, but returns early without closing the

handle. Deferred statements can also modify the function’s return value.

In this example, file.Close() is registered as a deferred function and will be

executed upon function return. If the maybeFail routine returns true the file

handle will be closed since file.Close() was registered as a deferred function.

If maybeFail returns false, and the function completes, then the Close will
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func l o adF i l e (name string ) {
f i l e , e r r := os . Open(name)
i f e r r != ni l {

os . Exit (−1)
}

defer f i l e . Close ( )

i f maybeFail ( ) {
return

}

f i l e . Close ( )
}

occur twice; however, that is not a problem. If loadFile calls os.Exit() then

any deferred functions will not be executed.

Also of importance is the order of evaluation for arguments and variables

used by the deferred statement. These data are evaluated at the time the

deferred function is registered.

func f oo ( ) {

x := 1

defer println ( x )

x = 2

}

Even though defer is called after the last statement in the function, where

x contains the value 2, the deferred println will print a 1 to the output. This

occurs since x was evaluated as 1 when the deferred function was registered.

A function can have multiple deferred statements. The statements are

treated as a stack, so the most recently registered flow will be executed first.

The following example illustrates the stack discipline, while also showing

that deferred statements can be defined as anonymous higher-order functions.
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func f oo ( ) {
defer func ( ) {println ( ‘ ‘ Three ’ ’ )} ( )
defer func ( ) {println ( ‘ ‘Two ’ ’ )} ( )
defer func ( ) {println ( ‘ ‘One ’ ’ )} ( )

}

This example would print the strings “One”, “Two”, “Three”.

2.11 Concurrency

Parallel computation is an inherently tricky task. To squeeze the most per-

formance out of a modern machine with multiple threads of execution and

CPU cores, programmers must rely on tricky techniques so that data can be

shared between all threads of a program. This is a notoriously complicated

feat for most humans. Most languages are designed with a single thread

of execution in mind, that is, no concurrency. However, operating systems

and additional libraries can be utilized by the human to parallelize their

computations and speed up execution. This typically requires synchroniz-

ing access to data that are shared across multiple threads of execution. To

prevent non-deterministic access, such as reading data that are in the state

of being mutated by another thread, humans must place locks. As with

memory management, humans often make bad judgements, and introduce

bugs which compromise the integrity of their programs. Go was designed to

eliminate the need for programmers to make difficult concurrency decisions,

and to remove as much human-error as possible. The language uses a simple

and safe method of computing data concurrently based on C.A.R Hoare’s

Communicating Sequential Processes (coroutining) concepts [36].

Coroutines, or more aptly called goroutines in Go, eliminate concurrent

access of data through the inherent design of the language. channels and the

go keyword, permit data to be shared without the need for the programmer

to make explicit synchronization calls. This guarantees that multiple con-
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current mutating threads never manipulate the data simultaneously, which

can compromise the integrity of the data.

Goroutines are functions that execute concurrently with other goroutines

(including the main thread of execution). They are light-weight threads:

cheap to create and cheap in terms of memory usage. A single operating

system thread can execute multiple goroutines concurrently. If any thread

is blocked, the goroutines on another system thread will still continue their

execution [23].

The go keyword can prefix any function, causing it to run as a light-

weight thread in parallel with other threads, including the main thread of

execution.

func g r e e t i n g ( ) { println ( ”He l l o ! ” ) }

func main ( ) {

go g r e e t i n g ( )

}

In the example above, the call to greeting will be executed in a separate

goroutine from main. Since main will probably terminate before greeting has

time to call println, the output will never be seen. This is not guaranteed,

but chances are that main will terminate before the call to println. If a delay

of sufficient time was to be introduced just after the go routine execution,

then the probability that greeting will complete is increased. However, this

is non-deterministic. To prevent further execution, until the data/function

has been processed, a channel can be used. Channels are used to transfer

data between concurrent computations, such as betweenmain and greeting in

this example. Synchronization can be facilitated through the use of channels.

The following code expands on the previous example by introducing a channel

variable. This will establish a communication between the main thread and

that which is executing greeting. The “<-” operator is used to send or receive

data from a channel. In the modified example, a channel is first created in
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func g r e e t i n g ( ch chan int ) {
println ( ”He l l o ! ” )
<− 1
println ( ”World ! ” )

}

func main ( ) {
ch := make(chan int )
go g r e e t i n g ( ch )
<− ch

}

main via the make built-in function. That channel is passed to greeting,

and main waits until any data is sent back down the channel. Notice that

greeting has no return value. The sending of data down a channel does not

mean that the goroutine has completed, but it does mean that the routine is

in a state whereby it has data ready for any other goroutine listening on the

channel. In this example main will continue executing as soon as it gets data

(which it ignores). greeting just sends an arbitrary value down the channel.

The data could have just as well been any other int value, as that was the

type we associated with the channel when it was declared. Since main blocks

until something is sent down the channel, then immediately terminates, it

is unlikely that the “World!” greeting will be displayed. In other words,

“Hello!” will be seen, but as soon as main continues in its separate thread,

it will terminate, possibly before “World!” is displayed.

As mentioned, make is used to construct a channel. If no count parameter

is passed to make then the channel is considered unbuffered. However, a

buffer can be specified by giving a count for number of items that can be

stored in the buffer:

ch := make(chan bool , 100)

The line above would allocate a channel that can store 100 boolean values.
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For instance, if the channel is buffered and 100 items have been stored down

it and no receiving goroutine has read any of the data from the channel,

then the sender will block until there is room in the buffer. Buffers are first-

in-first-out (FIFO) queues. This means that the receiver of the data will

be able to process all information it is passed from the sending goroutine,

irrespective of how slow the receiver might be.

2.12 Compilers

There are two primary compilers following the Go 1 specification of the lan-

guage, the Google compiler and GCC (gccgo). The Google compiler comes

with a suite of utilities all accessible via the go tool. This utility not only

builds go programs, but eliminates the need for Makefiles. The command

assumes a predefined directory layout where it can locate and build source

code and assemble modules if a project consists of multiple modules. This

utility also formats source code, can download build and install external li-

braries, and can run benchmarking and tests. The go tool can be selected to

use the GCC compiler if desired.

2.12.1 Google

The Google compiler was originally based off the Plan9 C compiler. This

compiler was designed to build programs fast while also making binaries

portable via static linking. The downside of fast compilation is that the

compiler performs fewer optimizations, resulting in an executable that does

not always run as fast as what other optimizing compilers (e.g. gccgo) might

provide.
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2.12.2 GCC

While not as fast in compile time as the Google compiler, gccgo can pro-

duce smaller and highly optimized binaries. The gccgo frontend for GCC

inputs Go source code and translates it into GCC’s intermediate language,

GIMPLE. This three-address-code generic representation is then used in a

series of optimization passes. The result is converted to the desired machine

architecture and output for assembly. We use GCC to test our RBMM im-

plementation described later in this thesis. Since GCC supports a plugin

feature, it is relatively simple to analyze and transform the GIMPLE repre-

sentation of a program, without the need to perform a recompilation of the

compiler. Since we are analyzing and transforming GIMPLE intermediate

language (and in some parts the machine intermediate language RTL), our

concepts can be extended to other languages that GCC can input (e.g. C,

C++, Fortran, etc.).

Both the Google and gccgo compilers use the same runtime provided by

the Go language.

This thesis makes use of the GCC compiler, and its plugin feature, to ex-

plore the internals of the Go language, analyze source code, and to transform

the input program.
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Chapter 3

Memory Management

A clear conscience is the sure sign of a bad

memory.

Mark Twain

M
anaging a system’s use of memory is a common task in software

engineering. Since memory is a limited resource, properly man-

aging this is important for developing safe and efficient programs.

System crashes can occur if memory is not managed correctly. Improperly

managed memory can reduce the amount of memory available for other pro-

cesses to use. This chapter introduces some basic concepts of memory man-

agement and looks at solutions that try to remove the programmer from this

complicated task.

3.1 Introduction

Memory is a limited resource on computing platforms. Even on modern

systems with gigabytes of memory, poor performance can result from abusing

these resources. While systems are increasing in compute power and gaining

larger main memory stores (increasing RAM size), more processes are being

executed on these machines in parallel. With more processes being run,

applications need to be written in a way that will not “hog” all of the memory

from the simultaneously executing applications. In other words, the fact that

a machine has more memory does not permit programmers from managing

memory as if it were an unlimited resource.
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Application portability is another factor for programmers to consider

when writing their programs. Having one application that executes on mul-

tiple environments is very useful, as it requires either sharing an existing

binary, or simply recompiling the code to run on a different architecture.

While one machine might have vast quantities of memory, a smaller, possibly

embedded device, can have tighter memory constraints. Therefore, sensible

use of resources is necessary so that both systems can execute the program

without being severely constrained on memory.

3.2 System Memory

A computer is composed of multiple types of memory: disk, system, cache,

and registers. This section introduces these various types of memory stores.

3.2.1 External Memory

External memory is the slowest data store within a system. Traditionally

this store was called “disk” memory; however, solid-state (no spinning disks)

drives are becoming common on modern systems. Typically, data stored

on an external drive are non-volatile. This means that the information is

preserved until the user asks the operating system to remove it (or until a

malfunction occurs). External memory is located furthest away from the

CPU, such as on a harddrive or an externally connected store (e.g . USB

drive). Not only is this memory the furthest from the CPU, but it is the

slowest for accessing a particular piece of information. Given a harddisk,

the drive must first move its read/write head to a specific location and then

transfer that information across a bus to the CPU. The amount of time it

takes for the drive to locate the data is called seek time. A benefit of an

external drive is that it is non-volatile, can be the lowest in price, and most

abundant in capacity. Binaries, text files, and media all reside on these stores.
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3.2.2 System Memory

When the operating system (OS) loads a program to execute, it must first

locate the binary on the non-volatile external store. That program is then

copied into system (also known as “main”) memory. This memory is the

RAM, which is volatile, solid-state, and is faster and closer to the CPU

than external memory. Volatility means that the information stored is only

temporary. Upon system reboot or power-down the state of the memory is

erased, and all of the information is lost. Solid-state is an important trait.

Unlike a traditional harddrive, there is virtually no seek time since there is

no read/write head that has to move in order to locate data. In contrast

to external memory, RAM is more expensive and has less capacity. When a

system becomes low on system memory, data can be exchanged with disk to

make room for the currently executing program(s). This process is known

as paging or swapping. Exchanging data between the solid-state RAM and

disk (which can also be solid-state) is a slow process. Therefore, having

memory efficient programs is necessary for optimizing system performance.

It is important to mention that solid-state harddrives are becoming more

common; however, these disks are still slower to access than RAM, due to

data having to traverse a longer bus path to reach the CPU.

3.2.3 Caches

The next tier of memory is the cache. The cache is solid-state and is located

on the CPU die, therefore it is faster for the CPU to access than the RAM.

In contrast to the system memory, the cache is more costly and of smaller

size.

This thesis is not concerned about the details of caches; however, data

locality is an important concept which influences system performance via

cache behavior. The results of our memory management research does impact

cache and overall system performance, therefore having a basic understanding
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Figure 3.1: Intel CPU caches

of caching is useful when trying to make sense of our research.

Caches are typically implemented in multiple levels. In this section we will

consider a three-level cache, which is common on the modern Nephalem Intel

CPUs; however, other architectures implement caches differently. Figure 3.1

illustrates this design.

The lowest level of cache, level 3, holds both data and instructions and

is shared between CPU cores given a multi-core system. The level 2 cache

is not shared per CPU core and also contains both data and instruction.

Even closer to the CPU is the level 1 cache, which is divided into instruction

and data. The most recent information is stored here. When the level 1

cache gets filled, the older/least-recently-used data is evicted and stored into

a lower level cache.

When a program requests data and that data already exists in cache, a

hit occurs. The system is most efficient when the cache is hot, whereby a

majority of data requests can be fulfilled by the CPU quickly obtaining the

requested information from cache. If the data is not in cache, a miss occurs.

The CPU must then check the RAM for the data. If the data cannot be

found there, it must be obtained from the external store.
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3.2.4 Registers

Data must reside directly in the CPU registers to perform computations.

This temporary store is the fastest of the types discussed above, but is also

the most limited in capacity. Since modern CPUs are capable of executing

multiple programs in parallel, the register state, which pertains to a specific

execution, must be swapped out to the cache allowing the CPU to restore the

state of another concurrently executing program, to perform computations

on that program’s behalf.

3.3 Virtual Memory

Virtual memory is an abstraction of the available memory that a process can

have. The OS presents each process with a seemingly contiguous chunk of

memory. In fact, it is often the case that the OS will present the process with

more memory than the system memory actually contains. From the perspec-

tive of the process, the memory is contiguous. However, the reality is that

the OS might have presented the process with chunks from non-contiguous

address spaces, but the process does not know any better. Virtual memory

works because of virtual addressing. All processes execute within the same

contiguous virtual address range. The range of addresses that is seen by each

process is not unique, and is the same for all processes. The OS is respon-

sible for mapping the process’s virtual addresses to physical/logical system

memory addresses. The OS is also responsible for the safety/partitioning

of memory, to prevent processes from accessing physical addresses that be-

long to other processes. Virtual memory will be discussed in more detail in

Section 3.4.1.
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3.3.1 Paging

As previously mentioned, a processes operates within a virtual address space.

What happens if a processes tries to access an address or needs more memory

than the system can provide? In this case, the OS is still responsible for giving

the process more memory. Since the external memory can be used as a giant

temporary store, the OS can obtain additional memory from a swap file or

partition located there. Data on the external store can be swapped with

system memory to provide additional system capacity and allow the process

to continue its execution. A page fault occurs when a page of memory is

not located in system memory and the OS has to obtain the data from the

external store. Page faults are expensive, since retrieval and copying to/from

external memory is slow (especially if the external store is a disk drive).

3.4 Process Memory Layout

A program exists as an executable file on a computer’s external store. Before

program execution can begin, that file must be copied from the store into the

system memory. It is the responsibility of the OS’s program loader to map

an executable file from the external store into the system memory. Before we

look at how memory is requested by the programmer, it is useful to envision

how a program looks at runtime after it has been loaded into memory.

3.4.1 Process Virtual Memory

On modern machines, each program is given its own portion of system mem-

ory to execute within. This memory contains the program’s instructions,

variables, as well as a segment of memory where dynamic allocations can be

produced from. The latter segment is known as the heap. On a Linux system,

all processes operate within a virtual address space. This range is identical

for all processes, which means that each concurrently running process will
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contain the same address range. This range is architecture specific, but for

x86 CPUs running Linux within a 32-bit address space, each process is given

a virtual address space of 232 − 1 bytes (or 4GiB)[65]. These addresses are

virtual. Even though these addresses might be the same for each process,

the underlying OS memory addresses are completely different and do not

overlap. The OS is responsible for translating between virtual address of a

process and a physical address in the system. Virtual addressing allows all

processes to operate on a seemingly contiguous (linear) span of memory, even

though that might not actually be the case. The physical system memory is

divided into pages. When a process needs additional memory, any available

page is mapped into the needy process. While the physical memory might

be out-of order, or even fragmented, the process, which operates on virtual

addresses does not witness this fragmentation. In fact, the system might

not even have the total amount of memory that is represented by the virtual

address space. As more system memory becomes available, which can occur

when processes terminate, their memory can be reused for other processes.

External memory can be used for paging, which provides additional storage

when the system memory becomes low. When paging occurs, portions of

the main memory are saved/copied to the external store for later use. The

addresses of the “paged” data in system memory can be reused to store new

data. Paging from system to external memories can be slow, since the data

has to be copied to a slower store located further from the CPU.

Figure 3.2 illustrates what a process looks like in main memory on a

Linux system. It shows the various memory segments that comprise the vir-

tual address space of single process running in a Linux environment. All

concurrently running processes look similar, and their address space has the

same range of virtual addresses; however, the sizes of the individual seg-

ments might vary. The following descriptions define the memory segments

of a process, beginning at the text segment and working towards the higher

addresses.
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Figure 3.2: Linux process in memory

text segment This segment contains read-only object code which repre-

sents the instructions for the program to execute.

data segment This segment contains the globally declared and defined vari-

ables.

bss segment This segment contains all static global and local variables de-

clared in the program. Their initial values are all zeroed at the time

program execution begins.

heap segment This segment grows toward the stack (towards the higher

memory addresses) and is where dynamically allocated data is produced
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from. Typically, this data the result when the programmer asks the

operating system for memory at runtime (e.g . malloc).

memory mapping segment This segment contains memory that can be

used for creating a custom memory allocator or can be used to map

files from disk into system memory. The latter use reduces disk reads

when accessing data from disk, since that portion of the disk is copied

into system memory.

stack On an x86 architecture the stack grows downwards. That is, as items

are pushed onto the top of the stack, the stack will extend towards the

lower memory addresses, of the process, approaching the heap. Data

for local variables and formal parameters are stored here. Data stored

on the stack is temporary and lasts for the duration of the function

that is being executed.

kernel space This is a protected memory segment used by the OS to map

in code and data for use only by the kernel. For the 32-bit x86 Linux

kernel, this space actually contains a copy of the entire kernel, which

improves cache performance [65].

3.5 Stack Data and Stack Frames

Many portions of a program utilize an amount of memory that can be deter-

mined statically at compile-time. Variable declarations are a programmer’s

way of expressing to the compiler that the program needs a specific amount

of memory. Variables declared within a function are often termed automatic,

or local, meaning that they are only accessible when that particular function

is being executed. The formal parameters for a function also make up this

set of variables. When a compiler processes a function, it can calculate the

number of variables and their sizes that make up that function. Therefore,
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the compiler knows how much memory will be needed by the system to ex-

ecute any function. The memory for these variables will be produced from

the stack segment of the process.

When a program begins execution, the data necessary for containing the

local variables in each function must be obtained from somewhere. This is the

purpose of the call stack, also known as the activation record or stack frame.

When each function is called, the stack segment associated to the process is

expanded to hold enough data for the locally allocated variables and formal

parameters of the function. This stack will grow and shrink depending on

the size and number of variables that each function being executed has.

When a function calls another function, the stack frame for the callee will

be produced from the top of the stack. As functions are called the stack will

grow. The stack frame for the currently executing function will always be at

the top of the process’s call stack. When a function completes, the stack will

shrink, effectively popping that function (its local and formal parameters)

from the stack. The execution will then resume on the lower frame (the

caller). This lower frame becomes the new top most frame.

3.6 Dynamic Memory

When writing a program, it is common for the programmer not to know how

much memory will be needed to accomplish a specific task. In these cases,

memory can be requested from the OS via an allocation call, such as new or

make in Go, or malloc in C. The memory returned from such allocation calls

is produced from the heap segment1 in the process’ memory space. Memory

allocated from this segment is not reclaimed once the function terminates,

and can live across multiple function calls, or even throughout the life of

1Depending on how a memory allocator is designed, the memory might come from the
memory mapped segment instead of the heap. We refer to both the heap and memory
mapped segments interchangeably as segments which can be used to produce dynamically
allocated memory.
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the program. The latter is often the sign of a memory leak; memory that is

allocated but never reclaimed.

Suppose a program takes as input from the user an arbitrary integer value,

and that the program makes use of this value by creating a list structure of

data based on the value supplied. In this case a programmer does not know

the amount of memory needed to construct the list. Instead, the programmer

must write code to create the list dynamically at runtime. Consider the

following piece of Go code:

type Node struct { id int ; next ∗Node}

func bu i l dL i s t (num int ) ∗Node {

var head ∗Node

for i :=0; i<num; i++ {

e l t := new(Node )

e l t . id = i

e l t . next = head

head = e l t

}

return head

}

The routine above creates a list of an arbitrary length based on some input

value num. While the use of a slice in Go would be more appropriate here,

the example above illustrates a common way in other languages to create a

linked-list structure of an unknown length. In languages that do not manage

the reclamation of memory automatically, such as C, the memory for each

allocation call would have to be reclaimed once the list is no longer needed.

If the memory were never reclaimed it would cause a leak and the program

could later run out of memory. Since this example is for Go, the programmer
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does not have to worry about memory reclamation, as the garbage collector

will reclaim that memory automatically.

When analyzing the lifetime of objects associated to an allocation, it is

important to consider that such allocations can occur from separate program

libraries or modules (object files). To obtain a fully accurate picture of the

lifetime for an allocated object, a whole program analysis must be performed.

Often, the source code for a particular library is not available, therefore a

compiler cannot perform a complete lifetime analysis. What this means is

that a programmer, who is fully in control of memory reclamation, must

also be aware of any allocated memory that results from calling external

libraries. In such a case, a compiler cannot produce warnings as it does not

have a complete representation of the program. A complete representation

would require some metadata or source code for any of the external functions

being called. Dealing with external libraries complicates the programmer’s

job of writing resource-safe applications.

3.7 Dynamic Allocation Problems

The manual management of memory is a complicated task for programmers.

The allocated memory can be alive across multiple function calls, program

modules, and libraries. Thus the programmer must be aware of when the

memory was allocated, where it was allocated from, and when it can safely

be reclaimed. Even if the language automatically reclaims memory, the pro-

grammer should still be aware of other problems that dynamic memory allo-

cation can cause, such as leaking memory, dangling pointers, and referencing

invalid or out of bounds memory.

3.7.1 Fragmentation and Locality

A memory allocator must return a contiguous chunk of memory to the pro-

cess, if not, the data for a single object (or array) would be distributed all
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throughout the process and access of an object would not produce the proper

value. Consider the case of a 32bit integer that is split between two disjoint

(non-contiguous) memory blocks. A reference to the integer would only pro-

duce the first half of the integer and not the second half.

During program execution subsequent allocation and deallocation of mem-

ory can produce “gaps” within the memory space of the process. These gaps

represent freely-available blocks of data that can be recycled by the memory

allocator and given back to the program to fulfill a later allocation request.

Fragmentation is a property of the underlying allocation routine (e.g . malloc)

and results in the program using more memory than necessary. For instance,

a highly fragmented process will have non-contiguous gaps of freed memory

within its memory space. If a subsequent allocation is issued and none of

those free-gaps are of adequate size (and contiguous) to fulfill the request,

then the allocator must request more memory from the OS.

A contiguous memory space is ideal for system performance. For instance,

an optimal memory layout would have complex objects (a structure and

all of its fields) located within close memory proximity. Optimal locality

reduces the potential for the system to experience multiple cache misses, and

subsequent page faults, when the program references an address. Optimal

locality can also mean that a process is using its memory space efficiently.

The latter would avoid the need for the OS to obtain additional memory to

fulfill an allocation request for a contiguous block of memory, even if the sum

of the (non-contiguous) free-blocks could otherwise have met the request.

3.7.2 Memory Leaks

Memory leaks drain a system of its available resources, which can impact the

performance of other concurrently executing programs. These leaks com-

monly occur in languages which require the programmer to manually man-

age the reclamation of requested/allocated memory. If the memory is never

reclaimed, then the memory will remain in use for the lifetime of the program.
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Complicating matters is the fact that allocated memory can escape the

function it was allocated in. Variables that point to allocated memory can be

passed as data to other functions, therefore it is not easy for the programmer

to determine the last use of an allocated object for reclamation purposes.

System memory is a global resource used by all executing programs. Even

though OSs can protect from sharing memory between executables, the mem-

ory itself is still a limited resource that the OS is responsible for distribut-

ing to all processes. Any excessive use of memory by the programmer can

greatly impact the system as a whole. Preventing memory leaks is necessary

for maintaining a stable system.

3.7.3 Invalid Memory Access

Invalid memory access occurs when the program attempts to make use of

information stored at an address in memory that is out of bounds to the

process, or if the program interprets data at an address incorrectly. These

cases occur in languages that permit pointer variables, such as Go. These

are well known bugs often resulting from poor programming by the human,

such as accessing array data that is outside the bounds of the array. The

following Go example illustrates this case.

func f oo ( ) {

var va lue s [ 1 0 0 ] int

println ( va lue s [ 1 0 0 0 ] )

}

There are two problems here. First, the address containing the value at

1000 integer sizes past the start of the values array might be in a different

memory segment or even outside of the memory allocated for the process.

The second problem is that reading such data is incorrect. In this example,

that value will be interpreted as an integer, which might not have even been

an integer. Further, that value does not belong to the values array.
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The Go language attempts to reduce these invalid accesses by imple-

menting bounds checking for arrays and slices. In this case, the compiler

will statically check if 1000 is larger than the defined array size of 100. The

compiler will issue an error and not produce a faulty-executable. Go also

performs runtime bounds checks for dynamically sized arrays (i.e. slices),

and if an access violation occurs the program safely terminates.

Pointer arithmetic is also dangerous, since it makes creating invalid mem-

ory access all to easy for the programmer. Go does not permit pointer arith-

metic, as adding/subtracting offsets to a base address can result in an invalid

memory access.

3.7.4 Dangling Pointers

A dangling pointer is a specific type of invalid memory access. These variables

contain an address that points to an invalid address. The pointer variable is

not problematic, but the data it points to is. Accessing the value pointed at

by the the variable is incorrect. Dangling pointers occur when the pointer

variable contains an address to dynamically allocated data that has been

reclaimed. In such a case the pointer might contain an address to another

object (possibly of a different data type) or a bit-pattern that is not an

address (e.g . a value contained in a primitive). If the pointer variable is

never updated, to reflect this change, it will point to memory that is no

longer relevant. In the cases where the address becomes a value outside of

the process space, or references data in a protected memory segment, the

OS will issue a segmentation fault. If the fault is not handled properly the

program can prematurely terminate.

Dangling pointers occur in languages that require the programmer to

manually manage memory. Languages that automatically manage memory

reclamation (e.g . garbage collected and some region-based memory manage-

ment languages) do not suffer from this problem; however, the language and

its runtime must be carefully designed to prevent these cases [15]. Since
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automated memory management systems ensure that all live variables can

only reference other live data, they are immune to the problems caused by

dangling pointers.

The following example, in the manually managed C language, illustrates

the access of a dangling pointer:

void update (Node ∗n)

{

/∗ Make use o f n . . . ∗/

f r e e (n ) ;

}

void make node (void )

{

Node ∗n = mal loc ( s izeof (Node ) ) ;

update (n ) ;

n−>id = 42 ; /∗ Boom ∗/

}

In this example the n variable is allocated enough memory to represent a

single instance of a Node. n is not the object, but a variable that points to

a Node instance in the heap. The update function uses n and then calls free

to release the memory, referenced by the value located at n, to the memory

allocator. n then becomes a dangling pointer and any access to data via n

is a memory violation.

While languages with automatic memory management are without the

problems of dangling pointers, they are not void of the problems caused by

nil value references. Some languages (such as Go) have a nil value which

can be used to set/initialize pointer variables to a value of nothing (they

point to an address of 0). Since these pointers point to nothing, reading or

writing to nil is a memory violation. Setting a pointer to nil is also a hint

to the garbage collector that the data being pointed to is no longer needed.
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If nothing points to an allocated object, then the memory for that object is

no longer needed and can be reused for later allocations.

The following Go example illustrates the access of a nil pointer:

func se tDe fau l t ID ( node ∗Node) {

node . id = 42 /∗ Bang ∗/

}

func main ( ) {

n := new(Node ) // Create a po in t e r to a Node o b j e c t

n = ni l

se tDe fau l t ID (n)

}

The Go language does not have an explicit memory reclaim operation, as

it is a garbage collected language; however, programmers can influence the

results of garbage collection by “zeroing” or “nulling” a pointer variable. In

the example above, n is passed to a function that updates the Node instance.

However, n was “nulled”and thus accessing the id field will be accessing an

invalid address. When execution reaches the body of setDefaultNode, node

is “nil” (0). This function will try to reference the id field, which is just an

offset from the base of node. In this case, the access of the id field from an

address of 0 will result in a segmentation fault.

3.8 Object Lifetimes

A variable’s lifetime defines how long a value stays in scope. A variable

is said to be live at any particular program point if its contents can be

accessed. When the contents are no longer accessible, the variable is said to

be unreachable or dead. Variables declared locally within a function reside

on the stack and only have scope within that function. When the function
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terminates and the stack frame is popped, those stack-allocated variables for

the function are no longer accessible and therefore become dead.

Dynamically allocated data have a lifetime that can extend across multi-

ple function calls. This heap-allocated memory can be passed between func-

tions and can be accessed via globally declared variables. Since the stack

does not manage the space for these allocations they must be handled by the

programmer or the language’s runtime.

In languages that require the programmer to manually manage memory,

the allocated data must be explicitly freed to return the unneeded data back

to the system. Otherwise, the memory would leak. In languages with au-

tomatically managed memory (e.g . GC or some RBMM implementations),

the system will determine when the memory can be reclaimed. This recla-

mation point can occur at a later time of program execution than what a

good programmer would have otherwise decided. Reclaiming sooner, rather

than later, can reduce the total in-use memory space (footprint) of a pro-

gram; providing the maximal amount of memory resources for the program

to utilize.

Global objects can also point to heap allocated memory. Since globals

are always accessible, their lifetime is that of the entire program.

3.9 Automatic Memory Management

The problems discussed above strengthen the argument that memory man-

agement can be a complicated task for programmers to accomplish. With

that thought in mind, there are a few solutions that aim to remove the need

to explicitly manage memory from the programmer’s role, and consequently

reduce the probability of creating bugs. The following sections provide infor-

mation regarding solutions to the memory management problems presented

earlier.
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3.9.1 Region-Based Memory Management

Region-based memory management is a combination of static analysis and

runtime instrumentation. Through a process of region inference, a compiler

can determine how long objects live and which objects have similar lifetimes.

The compiler can then group related objects together such that all of their

memory is allocated from the same (often contiguous) chunk of memory. This

group of objects is said to be allocated from the same region. Since these

objects live together, they can also die together. Based on the region inference

static analysis, the compiler can transform the program by inserting function

calls to region operations. Region operations are responsible for managing

the creation, removal, and allocation of data from a region. These operations

form the basis of an RBMM runtime system.

The following is a list of region operations that a typical RBMM system

implements in its accompanying runtime system. These operations can either

be inserted into the program automatically via the compiler or manually via

the programmer.

CreateRegion() Create an empty region from which data structures can be

allocated.

AllocateFromRegion(r, n) Allocate n bytes from region r.

RemoveRegion(r) Reclaim all of the memory from region r so that it can

be reused later.

RBMM can significantly reduce the execution time it takes to reclaim the

memory associated with objects. The region containing the memory for all

of the related objects can be reclaimed all at once. This can be much faster

than visiting each object individually and then reclaiming its memory.

Another benefit of RBMM is that it can enhance cache locality. Since a

relation is established at compile-time, which determines what objects belong

to which regions, an access to any one of the region’s objects can indirectly
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page-in the other objects from that region. This means that the related

objects, which also might be accessed at a similar time, will already be in

the fast system cache and not also have to be paged-in.

RBMM is not perfect. Since a region is reclaimed all at once, all of the

objects in that region must no longer be needed (e.g . no other live objects

reference the objects in the region that is to be reclaimed). This constraint

can create the situation where a majority of a region’s objects are no longer

needed, but a few (or even one) object remains alive. The RBMM runtime

system cannot remove this region until all of its objects are no longer alive.

This is what we call region bloat. An ideal RBMM system will try to avoid

this situation as best it can, to lower the memory pressure of the system.

Automatic and Manual RBMM

An RBMM system can be implemented as either a manual or fully-automatic

system. In the former, the programmer is responsible for inserting the re-

gion operation calls. In addition, manual systems require the programmer

to determine which objects are allocated from which regions. Manual sys-

tems are similar to traditional manual memory management. Arguably, such

systems add additional complexity for a programmer, since the programmer

must be aware of when groups of objects are no longer needed and when no

other objects refer to objects in a reclaimed region. In automatic RBMM

systems, the compiler determines all of the object relationships and lifetimes,

and transforms the program accordingly.

Manual RBMM does not achieve the memory-safety that a fully-automated

system can. It relies on the programmer to make decisions about objects in

addition to regions. This method suffers the same problems as with tradi-

tional manual memory management. A manual RBMM system can try to

analyze the programmer’s annotations at compile-time and issue compilation

errors/warnings if there are any inconsistencies detected, such as removing a

region before all of the objects from it are truly dead. A benefit of manual
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RBMM is that a good programmer can create regions that do not suffer the

bloat problem as discussed above.

A fully-automated RBMM system requires no programmer intervention.

However, a programmer can influence the compiler to make certain decisions

about how regions are managed [62]. For instance, a programmer can write

a program such that global variables point to other variables within the pro-

gram. Global variables can complicate static analysis. For instance, global

variables have a lifetime that lasts the duration of program execution. There-

fore, objects that are pointed-to by a global variable must also live for the

lifetime of the program. Any regions that belong to those objects must also

remain alive, causing region bloat. A fully-automated system can excuse the

programmer from having to remember when to reclaim an object.

Region Allocation Strategies

When designing an RBMM system, a key decision that has to be made is

how the runtime system manages the set of all regions. Certain RBMM

systems are implemented in a way that permit pointers between regions.

While this can reduce the overall size of a region, and potentially lead to

faster region reclamation, care must be taken to prevent dangling pointers

[15]. For instance, if a region is reclaimed and live data references objects

from that region, then those references will become dangling pointers and

refer to invalid memory. A region cannot be reclaimed until all of its objects

are no longer pointed to by objects from external regions. This constraint

imposes a lifetime on the regions. One solution to such extra-region pointers

is to allocate regions as a stack [61, 48, 9].

In the stack-of-regions approach, regions are created and pushed onto a

stack. The top most region on this stack is the youngest, and the oldest

is at the bottom. This system can impose a one-way direction of pointers;

pointers can only point from younger regions to older ones [45]. In such a

system, the regions are reclaimed as a stack pop operation. This ensures that
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a region will never create dangling pointers[15].

Another approach to region management is to nest regions in a tree hier-

archy. Regions at a higher level, the parents, cannot be reclaimed until their

child regions have been reclaimed. This solution has been utilized for RBMM

systems that function in a concurrent environment, whereby the parent node

holds a concurrency-lock on its children [19]. Access to a child region can

only occur if the parent has unlocked the child.

3.9.2 Garbage Collection

A common system of automatic memory management is garbage collection

[39]. GC is primarily a runtime operation which traces all reachable pointers

and reclaims the memory for objects that cannot be reached. These systems

are more computationally expensive than RBMM systems since most of their

work is performed at runtime. In contrast to RBMM, GC systems do not

suffer the problems of objects that do not have statically-decided lifetimes

(e.g. global variables).

Root Set

A GC first begins its operation by scanning a set of addresses which are

live in memory. This set, the root set, consists of stack variables, registers,

and global variables. At any time during program execution, these data are

accessible. When a collection cycle begins, the GC will transitively follow

pointers starting from the roots until a nil value address is reached. This

means that any objects not visited by the collector cannot be reached by any

live variables in the program. Therefore, the memory associated to those

non-reachable objects can be reclaimed.
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Non-Moving and Moving Collectors

There are two primary approaches to reclaiming items that are determined

to be garbage. A non-moving collector passes over all garbage items, linking

them together in a freelist. Future allocations are then taken from this list. In

contrast, a moving collector consolidates all the non-garbage items, typically

into a small number of contiguous regions; the remaining memory is then

free to be allocated later.

Moving collectors have several advantages. First, they allow memory to

be quickly allocated by simply advancing a pointer. Second, they give greater

locality of reference. Third, they naturally defragment free memory as they

consolidate in-use items; non-moving collectors must explicitly do this as

a separate operation. Finally, the time taken to consolidate non-garbage

items is proportional to the amount of non-garbage, while the time to link

together the garbage items is proportional to the amount of garbage. In a

well-designed GC system, the amount of non-garbage will usually be small

compared to the amount of garbage.

Conservative and Tyoe-Accurate Collectors

As it scans memory items, the GC system must determine which values are

pointers to memory items and which are something else (such as primitive

values). A conservative collector makes this decision by looking at the value.

Since a bit pattern that represents an address in a part of the heap managed

by the GC system could be a pointer, conservative collectors treat it as a

pointer, and keep alive the item it points to, even if that item is an integer or

other primitive type. A type-accurate collector maintains type information

about every variable and every structure type, and uses this to decide which

values are pointers.

Conservative collectors are generally simpler, since they do not need to

consider types. Therefore, they do not need the cooperation of a compiler

to provide type information. They are also applicable to weakly typed lan-
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guages, such as C, in which (due to typecasts) values present at runtime may

not reflect the declared types of the variables holding those values. However,

conservative collectors can mistake integers or other non-pointer values as

pointers. Such mistakes can accidentally preserve an item, and all the other

items reachable from it, which may collectively represent a large amount of

memory. Since these collectors cannot be certain whether a value (bit pat-

tern) they treat as a pointer actually is a pointer, they cannot update the

value, which means that they cannot be moving collectors.

Stop-the-World and Concurrent Collectors

One issue with GC is that a collector must not mutate values that are con-

currently being read/written to or from by the mutator (the non-garbage-

collector portion of the program). This is the same issue which complicates

concurrent programming. The simplest solution is for the collector to pause

program execution (stop-the-world), including all threads that might be con-

currently executing on behalf of the program, and then perform the actual

collection. This method can considerably slow down program execution, as

all mutator threads must wait until the collector has finished before they can

resume execution.

Parallel collectors are designed to avoid halting the mutator for significant

amounts of time. If the GC can guarantee that certain data will never be

written to (and possibly read) by the mutator during a collection cycle, then

it can safely process that data. Concurrent collectors which do not modify

the data of the objects (non-moving collectors) can permit reading of the

objects from the mutator[39]. However, write access to the object must be

locked to prevent the mutator from overwriting data by the garbage collector

or vice versa. In the case of a multi-threaded program, where a thread only

has access to data for itself (e.g . thread local storage) and is not being written

by another thread, then the memory associated with that single thread can

be collected while the rest of the program concurrently continues to execute.
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Concurrent collectors can also be implemented in a way that permits

the GC to use multiple threads (even if the GC is implemented as stop-

the-world), for instance, as a concurrent mark-sweep style collector [13, 41].

Traditionally a mark-sweep collector passes over memory twice during a sin-

gle collection cycle. The first pass locates and marks all reachable allocated

objects in the program. The second pass then scans the entire memory area

reclaiming the data for all objects that were never marked. The mark and

sweep passes can be made parallel such that separate threads can be used to

mark and collect different portions of the memory space.

3.10 Object Relationships

The responsibility of region inference is to statically determine which objects

are allocated from which regions. Properties about objects and their rela-

tionships are used to establish which regions they should be allocated from.

Knowing these relationships can also benefit GC.

3.10.1 Object Points-to Relation

The region inference portion of an RBMM analysis can define regions as be-

ing sets of objects based on a points-to relationship between these objects.

This relationship constructs a set of objects which have a transitive closure

of reachability. The benefit of this approach is that regions can be created

such that there are no objects which point into other regions. This means

that a region can be safely removed without the region having to wait for

any objects from external regions to die. This also prevents dangling point-

ers from being created due to pointers referencing data from other regions.

However, this relationship can create large regions. Having more objects in

a region increases the probability of gaining region bloat, due to a few live

objects keeping a region containing many dead objects alive.
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This connectivity association has also been utilized in Connectivity-based

GCs to improve collection time and memory usage [34].

3.10.2 Object Lifetime Relation

To maximize memory utilization, a program must allocate memory at the

latest possible time before the object is referenced. The memory must also be

reclaimed at the soonest possible time. Knowing the lifetimes of the objects

within a region allows regions to be constructed with objects that can die

together. This relationship can allow for inter-region pointers. Caution must

be taken by the region inference algorithm to assure that reclaiming a region

will not have any effects on pointers into the region that is to be reclaimed.

This relationship can also reduce the region bloat problem; however, object

lifetime analysis is a complicated analysis. Past research has shown that

object connectivity (points to) is useful in predicting object lifetime and

such information can benefit automatic memory management [35].

GC systems can be built that make use of object lifetime information.

Such systems can reduce the cost of GC by frequently processing objects

that are assumed to be garbage, and less frequently processing those that

are assumed to have longer lifetimes. The weak generational hypothesis, or

infant mortality, is the observation that the most recently allocated objects

have a high probability of also becoming garbage the soonest [63, 38, 39, 31].

This hypothesis is not attributed to one person, but is commonly referenced

in the garbage collection literature. This concept forms the basis for genera-

tional garbage collectors, whereby pools (called generations) of memory are

set aside for objects of different lifetimes. The young, or most recently allo-

cated objects, reside in a generation that is more frequently collected than

that of older objects. Objects get promoted to the older generation if they

survive multiple collections. Generational collectors have been shown to be

helpful for reducing the amount of work that a GC has to perform, while

also reducing memory footprint. [45].
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Chapter 4

Implementing RBMM for the

Go Programming Language

If we knew what it was we were doing, it would

not be called research, would it?

-Albert Einstein

4.1 Introduction

T
he garbage collected Go language has features that pose interest-

ing challenges for region inference. While this language does not

provide an RBMM system, our work does just that, in hopes of

improving time and space performance over that of Go’s existing garbage

collector. In this chapter we introduce RBMM as an automatic memory

management solution that can co-exist with Go’s existing garbage collec-

tor. Our solution provides a novel design which combines static analysis, to

guide region creation, and lightweight runtime bookkeeping, to help control

memory reclamation.

The novelty, and main advantage, of our approach is that it greatly limits

the amount of re-work that must be done after each change to the program

source code, making our design more practical than existing RBMM systems.

We have implemented RBMM as an extension to the gccgo compiler. Our

prototype implementation so far handles almost all of the first order sequen-

tial fragment of Go. In fact, our program analyses and transformations deal
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with GIMPLE, GCC’s intermediate language, but to make our presentation

more accessible, we discuss our methods as if they apply to a Go/GIMPLE

hybrid whose syntax we give in Figure 4.3. Reflecting the fact that we deal

with three-address code, we have normalized the fragment in obvious ways,

requiring for example that selectors, indexing, and binary operations are ap-

plied to variables, rather than to arbitrary expressions. Note that discussion

on the go-routine statements: go, recv, and send appears in Chapter 6.

In Chapter 2 we discussed the syntax and functionality of the Go lan-

guage. Recall that Go programmers are required to request dynamic memory

via the new routine or its variant make, which are like malloc in C. Unlike

other languages, Go allows functions to return references to local variables.

To avoid dangling references, the Go compiler automatically detects such

occurrences, and transforms the function to explicitly allocate storage on the

heap for the variable. Memory is never explicitly freed by the programmer;

instead, current Go implementations use GC.

4.2 Motivation

Different languages pose different challenges for RBMM; for example, logic

programming languages require RBMM to work in the presence of back-

tracking. Here we present our experiences with implementing RBMM for

Go. A prominent feature of Go are “go-routines”: independently scheduled

threads. Go-routines may share memory, and they may communicate via

named channels, à la Hoare’s Communicating Sequential Processes (CSP).

Chapter 6 focuses on how go-routines can be handled via RBMM, this chap-

ter only foucses on the sequential parts of Go. The sequential fragment of

Go is essentially a safer C extended with many modern features, including

higher-order functions, interface types, a map type, array slices, and a novel

escape mechanism in the form of “deferred” functions: if a function f calls a

deferred function d, execution of d is scheduled to happen just before control
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Memory

Time

with garbage collection
with regions

Figure 4.1: Memory occupancy, with ideal program analysis

is handed back to f ’s caller.

The following two figures (Figures 4.1, 4.2), compare the memory foot-

print of a hypothetical program using either GC or RBMM. Figure 4.1 illus-

trates the difference in memory occupancy, assuming RBMM is based on an

ideal program analysis. In this ideal case, the region inference analysis has

produced transformations that allocate memory items1 into regions of suffi-

cient size as to not generate region bloat, while also reclaiming memory at

the soonest possible time. In contrast, Figure 4.2 looks at a more conserva-

tive RBMM analysis resulting in a worse-case scenario for regions, whereby

a region becomes increasingly large and acts as a memory leak. The latter

is analogous to the region bloat problem, which we discuss in Chapter 3 and

in Section 4.3.1.

Our motivation is to compare the performance (both space and time)

between Go programs using the existing Go GC system versus our RBMM

system. We hope to achieve a more predictable and consistent footprint as

presented in Figure 4.1.

1Since Go has structured data types (objects), we generically refer to all values resulting
from an allocation as an item. An item can be a pointer to a primitive (e.g . var p *int)
or a complex structure/object.
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Time
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with regions

Figure 4.2: Memory occupancy, with imprecise program analysis

4.3 Region-Based Memory Management

RBMM systems must annotate every memory allocation operation with the

identity of the region that should supply the memory. The system must also

insert, into the program, calls to the functions implementing the primitive

operations on regions. An allocation cannot come from a nonexistent region.

Since we want to minimize the lifetime of each region, we want to insert

code to create a region just before the first allocation operation that refers

to that region, and we want to insert code to remove a region just after the

last reference to any memory item stored in that region. Figuring out which

allocation sites should (or must) use the same regions requires analysis.

Every region must be created and removed. The time taken by these

operations is overhead. To reduce these overheads, we want to amortize the

cost of the operations on a region over a significant number of items. Having

each item stored in its own region would impose unacceptably high overheads,

though it would also ensure that its storage is reclaimed as soon as possible.

Having all items stored in a single giant region would minimize overheads,

but in most cases, it would also ensure that no storage is recovered until the

program exits. We aim for a happy medium: many regions, with each region

containing many items.

The hardest task of the program analysis needed for RBMM is figuring

out the dependencies between regions. If an item A may contain a pointer

to an item B, then the region containing item B cannot be freed until the
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Prog → Func∗

Func → func Fname ( Var ∗ ) { Stmt∗ return Var }

Stmt → Var = Var

| Var = ∗ Var

| ∗ Var = Var

| Var = Var . Sel

| Var . Sel = Var

| Var = Var [ Var ]

| Var [ Var ] = Var

| Var = Const

| Var = Var Op Var

| Var = new Type

| Var = Fname ( Var ∗ )

| Var = go Fname (Var ∗)

| Var = recv fromVar

| send Var onVar

| if Var { Stmt∗ } else { Stmt∗ }

| loop { Stmt∗ }

| break

Figure 4.3: A representative Go/GIMPLE fragment

region containing item A is freed, because doing otherwise would leave those

pointers dangling. The set of regions will typically form a directed acyclic

graph. In principle, it could form a cyclic graph, but any cycle in the graph

represents a set of regions in which no region can be freed before any of the

others. Since all the pages in those regions would be freed at the same time,

merging the regions into one will yield a program with less overhead. We

discuss our solution for the dangling pointer problem in Section 4.4.3. This

analysis data is used by the compiler to transform the program by inserting

region operations. These calls, or region annotations, are responsible for

creating and reclaiming regions, as well as allocating memory from a region
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at runtime.

4.3.1 Challenges of RBMM

While RBMM systems have great potential, they also pose significant chal-

lenges.

RBMM is based on a static analysis, therefore there are times where this

analysis cannot distinguish the lifetime for all items. This limitation can

result in most of the memory allocated by the program being allocated from

a single giant region, which cannot be released until the end of the program’s

execution.

In such cases RBMM does not reduce the program’s memory requirement

at all. Figure 4.2 illustrates this kind of memory leak. Each kind of behaviour

is observed in practice [53]. RBMM systems can also yield larger binaries,

due to the inclusion of primitive region operations. Besides the time needed

by these calls, the increased size can affect instruction cache performance.

Lifetime analysis poses another challenge for RBMM. For instance, if a

dynamically created item is reachable from a global variable, the compiler

cannot determine the lifetime of that item, and must therefore conservatively

assume that its lifetime is the lifetime of the program. Global variables can

therefore create memory leaks.

Another problem is that in the quest to avoid having too many too-small

regions, the RBMM system may put into the same region items that in fact

have different lifetimes. The problem is that while some items in a region are

alive, no part of the memory of that region may be reclaimed. This means

that an RBMM system cannot reclaim the memory of a dead item in a live

region, which results in region bloat as discussed in Chapter 3. This problem

does not exist in GC systems.
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4.4 Implementation

In this section we discuss our RBMM design for a subset of the Go language.

This initial implementation does not handle the parallelization features of

Go (e.g . go-routines and channels).

4.4.1 Region Types

The regions that our static analysis infers from the input source code are of

two types: non-global and global. Non-global regions are created and passed

as data down to functions. The global region holds data for which our analysis

cannot deduce a lifetime, such as data pointed to via global pointers. There

is only ever a single instance of this global region per program. Recall that

it would be incorrect for our system to try to remove data when its lifetime

is undecided, since such a removal might reclaim data that is needed later

in execution. In the implementation of our RBMM system discussed in this

chapter, we use Go’s mark-sweep garbage collector to manage items with

undecided lifetimes (items allocated from the global region). The garbage

collector can safely reclaim items using a runtime analysis. Since GC is a

runtime feature, it can slow down program execution. Naturally, we aim

to place as much data as possible into non-global regions as opposed to the

global region.

4.4.2 Region Instrumentation

We now introduce some concepts that help explain our runtime support for

regions. A region flexipage is a fixed-size, contiguous chunk of memory. For

allocations that are bigger than a standard region page, we round-up the

allocation size to the next multiple of the standard page size (hence the flexi

prefix used in our terminology), therefore our regions can consist of pages

of varying sizes. The default page size we choose for our RBMM system is

4KB, which matches the size used in our development machine’s OS. Since
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all memory items must be wholly contained within a single region page,

handling memory allocations of an unbounded size requires the ability to

allocate region pages of an unbounded size. Therefore RBMM systems in

practice must support multiple page sizes. The region page has a header

containing a link field so that pages can be chained into a linked list. The

page header also contains the next free memory word on that page.

Since regions manage the memory from a page, having the pointer on

every page is redundant. In our updated system, discussed in Chapter 5, we

move the latter free memory word into the region header. This reduces the

size of region pages by one word.

A region is a linked list of pages. The region header contains bookkeeping

information about the region, such as its most recent page. As we explain

later, it also includes a protection counter. Region headers are not located

on any of the pages used for data. Instead, all region headers are managed on

a separate series of pages dedicated just to containing region headers. This

design decision was simple to implement; however, it makes regions disjoint

from their data. This can negatively impact cache performance (e.g . cache

misses) when the header and its corresponding data are not both already in

the cache. The address of a region’s header is the region handle, through

which it is known to the rest of the system. We refer to a variable that holds

a region handle as a region variable. Regions are passed as arguments to

functions which might allocate memory for an object created in that function.

Our runtime system maintains a freelist of unused region pages. A newly

created region contains a single page. As allocations are made using a par-

ticular region, the region will be extended as needed, taking pages from the

freelist if possible, and chaining them onto the region’s list of pages. Recla-

mation of a region simply means returning its list of pages to the freelist.

Quick reclamation is one key benefit of RBMM over that of manual and GC

systems.

The following region operations are inserted into the program to imple-
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ment RBMM:

• CreateRegion(): Create an empty region from which memory items can

be allocated.

• AllocFromRegion(r, n): Allocate n bytes from region r.

• RemoveRegion(r): Reclaim the memory of region r so that it can be

reused later, if the region’s protection count and thread reference count

are both zero.

• IncrProtection(r): Increment the region’s protection count, ensuring

that calls to RemoveRegion(r) do not actually reclaim r until after

DecrProtection(r) is called. We explain the role of this operation in

Section 4.4.4.

• DecrProtection(r): Decrement the region’s protection count.

4.4.3 Program Analysis

The job of our analyses is to decide, for each pointer-valued variable in the

program, which region should hold the items to which it points. Our anal-

ysis is implemented by two passes: a intraprocedural pass followed by an

interprocedural pass. The intraprocedural analysis is concerned with only

assignment statements that involve pointers (including memory allocations),

while the interprocedural analysis propagates this information across func-

tion calls, and is repeated until a fixed point is reached.

Preventing Dangling Pointers

Our analysis is designed to prevent dangling references. As we discussed

earlier, if an object A points to an object B, and if B’s region is reclaimed

before A’s, then any access to B via A will result in an invalid memory access,

since A’s pointer to B would be a dangling reference. We solve the dangling
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Map = Func → EqConstrs

S : Stmt → Map → EqConstrs

F : Func → Map → Map

P : Prog → Map

S[[v1 = v2]]ρ = (R(v1) = R(v2))

S[[v1 = ∗v2]]ρ = S[[∗v1 = v2]]ρ = (R(v1) = R(v2))

S[[v1 = v2.s]]ρ = (R(v1) = R(v2))

S[[v1.s = v2s]]ρ = (R(v1) = R(v2))

S[[v1 = v2[v3]]]ρ = S[[v1[v3] = v2]]ρ = (R(v1) = R(v2))

S[[v = const]]ρ = true

S[[v1 = v2 op v3]]ρ = true

S[[v = new t]]ρ = true

S[[if v then { s1 . . . sn } else { t1 . . . tm }]]ρ

= (
n
∧

i=1

S[[si]]ρ) ∧ (
m
∧

i=1

S[[ti]]ρ)

S[[loop { s1 . . . sn }]]ρ = (
n
∧

i=1

S[[si]]ρ)

S[[break]]ρ = true

S[[v0 = f(v1 . . . vn)]]ρ = θ(πf0...fn(ρ(f)))

where θ = {f0 7→ v0, . . . , fn 7→ vn}

F [[func f (f1 . . . fn) { s1 . . . sm; return f0 }]]ρ

=

[

f 7→
(

m
∧

i=1

S[[si]]ρ
)

]

P [[d1 . . . dn]] = fix

( n
⊔

i=1

F [[di]]

)

Figure 4.4: Region constraint generation



pointer problem by unifying objects based on a points-to analysis. This

analysis forms the basis of our variable unification (equivalence constraint)

generation, which infers regions without dependencies between regions.

At compile time our analysis generates object associations based on which

objects point to which other objects. Those associated objects are unified by

our analyses making them belong to the same region. Therefore, at runtime

their corresponding allocations will come from the region they share. In

the prior example, object A and B would both be produced from the same

region, therefore A cannot be reclaimed before B and vice-versa. Instead,

the memory for both A and B will be reclaimed at the same time.

Intraprcedural and Interprocedural Analyses

Our analysis associates with each variable v in the program (or program

variable) its own region variable, which we denote R(v). If v1 is a pointer,

then R(v1) = r1 means that throughout its lifetime, from its initialization

until it goes out of scope, whenever v1’s value is not null, v1 will always point

into region r1.

We even associate a region variable with non-pointer-valued variables. If

v2 holds a structure or array that contains pointers, then R(v2) = r2 means

that all the pointers in v2 will always point into region r2 when they are

not null. If v3 is a structure or array that does not contain pointers, or

if it is a variable of a non-pointer primitive type such as an integer, then

R(v3) = r3 means nothing, and affects no decisions. Equalities of this last

type are redundant, and our implementation does not generate them, but

it is easier to explain our algorithms without the tests required to avoid

generating them.

Our analyses build sets of equivalance constraints on these region vari-

ables. These sets are the result of unifying program variables based on a

points-to (assignment) association. This unification merely associates the

righthand side of an assignment with the same set as the lefthand side. For
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example, the assignment a = b would cause us to generate the constraint

R(a) = R(b). If the final constraint set built by our analysis does not require

R(v1) = R(v2), then we can and will arrange for the memory allocations

building the data structures referred to by v1 and v2 to come from different

regions.

Our analyses require every variable to have a globally unique name, so

we rename all the variables in the program as needed before beginning the

analysis. For convenience, we also rename all the parameters of functions so

that parameter i of function f is named fi. If the function returns a value,

we generate a new variable named f0 to represent it, and modify all return

statements to assign the value to f0 before returning it.

Figure 4.4 defines the functions we use to generate region constraints. The

top of this figure gives the types of these functions. In these types, EqConstrs

is the set of equivalence constraints on region variables (each constraint is

itself a conjunction of primitive equivalences); and Mapis the set of mappings

from function names to sets of these constraints. S, F , and P generate

constraints for statements, function definitions, and programs respectively.

The semantic function S is used to produce a set of equivalance constraints

from a given statement and Map. F is a semantic function producing a new

Map from a given function and Map. P is a semantic function producing a

Map for all functions in the program.

For most kinds of Go/GIMPLE statements, the constraints we generate

depend only on the statement. The most primitive statements are assign-

ments, and since Go/GIMPLE is a form of three-address code, each assign-

ment performs at most one operation, and the operands of operations are all

variables.

The assignment v1 = v2, where v1 and v2 are pointers or structures con-

taining pointers, can refer to (alias) the same memory. In this case we con-

strain the variables to obtain their memory from the same region. If they

are not pointers, this is harmless.
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After the assignment v1 = ∗v2, v2 points to the region in which v1 is stored.

Since v2 can point only into R(v2), the region in which v1 is stored will be

R(v2). The region that v1 points into, that is, R(v1), can thus be reached

from R(v2). Most RBMM systems handle such assignments by establishing a

dependence between R(v1) and R(v2) requiring R(v2) to be reclaimed before

R(v1) (if R(v1) were reclaimed while R(v2) is in use, some pointers in R(v2)

could be left dangling). This scheme allows, for example, the cons cells of

a list to be stored in a different region from the elements of the list. If the

cons cells are temporary while the elements are longer lived, this allows the

list skeleton to be reclaimed earlier. The implementation discussed in this

chapter does not incorporate this refinement; however, the modified RBMM

design presented in Chapter 5 does. Instead, we simply unify v1 and v2

resulting in both of their data being stored in the same region. This is

safe, but overly conservative. We handle all assignments involving pointer

dereferencing, field accesses, and array indexing the same way, for the same

reason.

Assignments involving constants obviously generate no constraints. Since

Go does not support pointer arithmetic, assignments involving arithmetic

operations have no implications on memory management. Assignments that

allocate new memory also do not impose any new constraints: the region

in which the allocation will take place is dictated by the constraints on the

target variable, not by any property of the allocation operation itself.

To process a sequence of statements (whether in a function body, in an if-

then-else branch, or in a loop body), we simply conjoin the constraints from

each statement. We also conjoin the constraints we get from the then-parts

and else-parts of if-then-elses. In Go/GIMPLE, all loops look like infinite

loops with break statements inside if-then-elses. The break statement

generates no new constraints. All these rules say that the constraints imposed

by the primitive statements must all hold, regardless of how those primitives

are composed into bigger pieces of code.
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The most interesting statements for our analysis are function calls. (They

may or may not return a value; if they do not, we treat them as returning a

dummy value, which is ignored.) A function call is the only construct whose

processing requires looking at ρ, which maps the names of functions to the

set of constraints we have generated so far for the named function’s body.

That function body may require some of the function’s formal parameters

to be in the same region, and when processing the call, we need to impose

corresponding constraints on the corresponding actual parameters.

The rule for function calls starts by looking up the name of the called

function in ρ (this is what ρ(f) does); this will yield a constraint. It then

projects that constraint onto the formal parameters of the callee (f1...fn),

including the one representing the return value (f0). This discards all the

primitive constraints involving variables other than formal parameters, but

keeps their implications. For example, given the constraints R(f1) = R(v5)∧

R(v5) = R(f2), the projection yields R(f1) = R(f2). The rule for function

calls then renames the program variables inside these constraints to refer to

the actual parameters in the caller, not the formal parameters in the callee.

For example, if the call had v8 and v9 in the first two argument positions,

this renaming would yield R(v8) = R(v9).

This process obviously depends on ρ containing the correct constraint

for every function in the program. This is determined by the fixed point

computation in the definition of P . For F , we begin our analysis with ρ

mapping the name of every function to true, reflecting that we do not yet

have any constraints about any of the program’s functions. We compute a

new ρ reflecting the constraints each function would impose if none of the

functions it calls imposed constraints (our intraprocedural analysis). For

our interprocedural analysis, we repeat this computation, beginning each

iteration with the ρ just computed, until the analysis reaches a fied point

(when the resulting ρ is the same as it was in the previous iteration).

Figure 4.5 is an example program from which our analysis produces the
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following constraints. (Some additional constraints will occur for temporary

variables introduced in the GIMPLE code, but we ignore those here):

• CreateNode: R(CreateNode0) = R(n),

• BuildList: R(n) = R(BuildList1) ∧ R(CreateNode0) = R(n)

• main: R(n) = R(head).

This is inherently a whole-program analysis, and that threatens to make

it impractical for real use. Therefore, we have carefully designed our analy-

sis to permit practical implementation. First, the analysis is flow and path

insensitive, since the order in which statements in a function body are exe-

cuted, and which arm of a conditional will be executed, are not significant.

This helps make the analysis scalable. More importantly, and contrary to

most existing RBMM implementations to date that we know of, our anal-

ysis is context (or call) insensitive: the analysis of a function depends only

on the functions it calls, not on the functions that call it. When program

transformations depend upon a whole-program context sensitive analysis, a

change anywhere may require reanalyzing and recompiling any part of the

program. With a context insensitive analysis, only modules that import a

changed module will need to be reanalyzed and recompiled, and only when

the analysis result for an exported function has actually changed. We believe

this will reduce the need for reanalysis and recompilation to the point that

this approach will be practical.

4.4.4 Transformation

Once the program analysis is complete, we transform the program to use

region-based primitives for memory management. This involves replacing

calls to Go’s memory allocation primitives with those of our RBMM memory

allocator, and inserting calls to create and remove regions. To support this,

we must also transform functions to take regions as input arguments.
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1 package main

2 type Node struct {id int; next *Node;}

3

4 func CreateNode(id int) *Node {

5 n := new(Node)

6 n.id = id

7 return n

8 }

9

10 func BuildList(head *Node, num int) {

11 n := head

12 for i:=0; i<num; i++ {

13 n.next = CreateNode(i)

14 n = n.next

15 }

16 }

17

18 func main() {

19 head := new(Node)

20 BuildList(head, 1000)

21 n := head

22 for i:=0; i<1000; i++ {

23 n = n.next

24 }

25 }

Figure 4.5: Creating a linked list in Go



1 package main

2 type Node struct {id int; next *Node;}

3

4 func CreateNode(id int, reg *Region) *Node {

5 n := AllocFromRegion(reg, sizeof(Node))

6 n.id = id

7 RemoveRegion(reg)

8 return n

9 }

10

11 func BuildList(head *Node, num int, reg *Region)

12 n := head

13 for i:=0; i<num; i++ {

14 IncrProtection(reg)

15 n.next = CreateNode(i, reg)

16 DecrProtection(reg)

17 n = n.next

18 }

19 RemoveRegion(reg)

20 }

21

22 func main() {

23 reg1 := CreateRegion()

24 head := AllocFromRegion(reg1, sizeof(Node))

25 IncrProtection(reg1)

26 BuildList(head, 1000, reg1)

27 DecrProtection(reg1)

28 n := head

29 for i:=0; i<1000; i++ {

30 n = n.next

31 }

32 RemoveRegion(reg1)

33 }

Figure 4.6: Same program with region annotations



As discussed in Section 4.4.3, our analysis only summarizes the region

equivalance constraints imposed by each function and the functions it calls;

it does not collect the region constraints imposed by the callers of each func-

tion. This means that some callers to a function may require a certain region

parameter to survive the call to the function, while others do not. To mini-

mize memory usage, we want to reclaim the region as soon as possible point

in the program. This point might be in a callee when the caller no longer

needs the region. Therefore, we introduce region protection counts and dis-

tinguish between reclaiming a region, which actually deallocates the storage,

and removing a region, which reclaims the region if and only if its protection

count is zero. Thus each function is expected to remove the regions asso-

ciated with its input parameters, (but not those associated with its return

value) as soon as it is finished with them. When a region passed to a function

is needed after the function call, we increment the protection counter for the

region before the call, and decrement it after the call. This small runtime

overhead is the price we pay for limiting ourselves to a context insensitive

program analysis. Figure 4.6 shows the automatically transformed version

of the code in Figure 4.5.

We present the transformation of program fragment Syn1 into Syn2 using

the notation:

Syn1  Syn2

Transformations may be applied in any order, and we apply them repeatedly

as long as any of them are applicable.

We use a few auxiliary functions to access the analysis results for program

P . compressf〈r0, r1, . . . rn〉 is the list of regions 〈r0, . . . rn〉, without duplicates,

as implied by the region equivalance constraints for f ’s formal parameters

(f1, . . . fn) and return value (f0). reg(f) is the set of all distinct regions

needed for the definition of function f , as determined by P(P )(f). ir(f) is

the set of distinct regions of the parameters of function f , that is ir(f) =

compressf〈R(f0),R(f1), . . .R(fn)〉. (Since these regions are given to f by its
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caller, they are f ’s input regions.) used(S1; . . . Sn) is the set of regions used

by any of the statements S1; . . . Sn. nonlocal(S) is the set of regions used for

variables appearing in statement S other than for variables scoped to S or

some statement within S. That is, it is the set of regions used within S that

may need to outlive S.

Region-Based Allocation

We must replace all uses of Go’s new or make primitives with calls to our

special region allocator, AllocFromRegion(r, n). This primitive requests n

bytes of dynamic data from region r.

v := new (t)  v := AllocFromRegion(R(v), size(t))

To store objects with undetermined lifetimes, we use the single special

global region. This region is created upon program initilization and exists for

the duration of the program’s execution. Any data allocated from the global

region is produced and reclaimed via Go’s garbage collector.

Function Calls and Declarations

Every function that takes pointers (or structures containing pointers) as in-

put or returns them as output must be transformed to also expect region

arguments. Recall that the region argument r0 represents allocations that

are made for the return value of the callee. We indicate the region arguments

of a function by enclosing them in angle brackets following the ordinary func-

tion arguments:

f(a1, . . . am)〈r0, r1, . . . rn〉

We use this notation for clarity; our implementation handles region argu-

ments the same way as other arguments.
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The transformation must add a region parameter for each function pa-

rameter and return value if they are pointers or structures containing point-

ers. However, if the analysis has determined that the regions of two or more

parameters must be equal, only the first must be added.

This permits us to transform function definitions to introduce region pa-

rameters:

func f(f1, . . . fn) {

S1; . . . Sm;

return f0;

}

 

func f(f1, . . . fn)〈r0, r1, . . . rp〉 {

S1; . . . Sm;

return f0;

}

where 〈r0, . . . rp〉 = ir(f)

This adds a region parameter for each function parameter, but excludes any

that the analysis pass has determined must be equal to the region for a

parameter appearing earlier in the parameter list. A corresponding transfor-

mation introduces region arguments into function calls:

v = f(v1, . . . vn)  v = f(v1, . . . vn)〈r0, r1, . . . rp〉

where 〈r1, . . . rp〉 = compressf〈R(v0),R(v1), . . . ,R(vn)〉

This transformation also adds a region argument for each function argument,

using the analysis of the function being called to compress out redundant

regions. The appropriate region to pass for each argument, and for the

return value, is determined by the analysis.
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Region Creation and Removal

The transformation pass tries to create regions at the latest possible time, and

remove them as early as possible. There are two ways a function may obtain

a region: it may receive the region from its callers, or it may create the region

itself. Conversely, there are three ways a function may finish with a region:

it may explicitly remove the region, it may pass the region to a function that

is responsible for removing it, or in the case of the region associated with the

function’s return value, it may allow the region to remain after the function

completes execution. This is handled by the following transformations.

func f(f1, . . . fn) {

S1; . . . Sm;

return f0;

}

 

func f(f1, . . . fn) {

C;S1; . . . Sm;R;

return f0;

}

where C = {r=CreateRegion(); | r ∈ reg(f) \ ir(f)}

R = {RemoveRegion(r); | r ∈ reg(f) \ {R(f0)}}

This places all the needed allocations at the beginning of each function body,

and all required region removals at the end. The next two transformations

migrate those primitives to their best location in the function body. We

currently insert region creation operations at the program points just before

the first allocation is requested from that region. (Note that even though

we do not currently migrate the region creation call for the implementation

discussed in this chapter, we still discuss potential transformations that can

benefit overall performance.)
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r=CreateRegion();

S1; . . . Sm;

Sm+1; . . . Sn;

 

S1; . . . Sm;

r=CreateRegion();

Sm+1; . . . Sn;

where r 6∈ used(S1; . . . Sm)

S1; . . . Sm;

Sm+1; . . . Sn;

RemoveRegion(r);

 

S1; . . . Sm;

RemoveRegion(r);

Sm+1; . . . Sn;

where r 6∈ used(Sm+1; . . . Sn)

For convenience, our implementation actually places the removal at the end

of the basic block that contains the statement of last use for that region.

Two more transformations allow region creation and removal to migrate

into loops and conditionals. Moving region creation and removal into a loop

adds runtime overhead, but by reclaiming memory earlier, it may significantly

reduce peak memory consumption. Since the compiler cannot determine

whether the amount of memory that will be allocated across a loop can lead

to out-of-memory errors, region creation and removals can be pushed (as

a pair) into loops where possible. We could also push region creation and

removal into conditionals where possible, because it can reduce peak memory

use.

Our current system does move the region removal calls if they are inside

a loop. If the creation is outside of a loop, then the removal is moved just

outside of the loop. This prevents the dangling case where the loop will reuse

a region that was removed in a previous iteration. If the region creation is

inside a loop, then the removal is placed as the final statement in the basic
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block before the loop jumps back to the loop start. This allows the memory

to be reclaimed per loop iteration.

r = CreateRegion();

loop {

S1; . . . Sm;

}

RemoveRegion(r);

 

loop {

r = CreateRegion();

S1; . . . Sm;

RemoveRegion(r);

}

where r 6∈ nonlocal(loop {S1; . . . Sm; })

The remaining creation/removal optimizations in this section are not im-

plemented but we discuss these here, as they can be helpful for future impl-

mentations. The following transformation may be useful when only one arm

of a conditional uses a region:

r = CreateRegion();

if t {

S1; . . . Sm;

} else {

Sm+1; . . . Sn;

}

 

if t {

S1; . . . Sm;

} else {

r = CreateRegion();

Sm+1; . . . Sn;

}
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if t {

S1; . . . Sm;

} else {

Sm+1; . . . Sn;

}

RemoveRegion(r);

 

if t {

S1; . . . Sm;

} else {

Sm+1; . . . Sn;

RemoveRegion(r);

}

Another optimization can be performend when the analysis results in

a CreateRegion()followed immediately by a RemoveRegion(); we can remove

both calls:

S1; . . . Sm;

r = CreateRegion();

RemoveRegion(r);

Sm+1; . . . Sn;

 
S1; . . . Sm;

Sm+1; . . . Sn;

Region Protection Counting

To remove each region at the earliest possible time, we must put a call

RemoveRegion(r) immediately after the last use of any object stored in region

r. To determine even a conservative approximation of the earliest place each

region can be removed requires a global analysis of the program. This is dif-

ficult to implement, and doubly so to implement incrementally, so that after

a small change to a program, only the functions that need to be reanalyzed

will be.

We have not yet implemented a global analysis. Our current analysis

processes the modules of the program, and the functions in each module,
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bottom-up (analyzing callees before callers, and analyzing mutually recur-

sive functions together). This is simple to implement and allows efficient

compilation, but does not permit the code generated for a function to be

influenced by call contexts.

When compiling a function, we cannot know whether or not it should

remove the regions it uses; that depends on the call path to that function

(that is, the call stack at the time the function is called). The ideal way to

allow the caller to determine which regions are removed is to have a special-

ized version of each function for each combination of regions it should free.

However, this can generate exponentially many versions of each function, and

may greatly increase the size of the executable, reducing instruction cache

effectiveness.

Another alternative would be for each function to remove only the regions

that all its callers agree should be removed, and for callers of that function

that require any other region to be removed to remove it themselves after the

call. However, by delaying region removal, this may increase peak memory

consumption, possibly to an unacceptable level.

We have implemented a third approach: dynamic protection counts. With

this approach, each region maintains a protection count of the number of

frames on the call stack that need that region still to exist when they con-

tinue execution. We transform each function to remove all regions passed

to it as arguments, except the region for the return value, provided their

protection count is zero. We also transform the function body so that for

each region r that is passed in a function call, if any variable v with R(v) = r

is needed after the call, we invoke IncrProtection(r) before the call, and we

invoke DecrProtection(r) after the call:
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S1; . . . Sm;

v = f(. . .)〈. . . , r, . . .〉

Sm+1; . . . Sn;

 

S1; . . . Sm;

IncrProtection(r);

v = f(. . .)〈. . . , r, . . .〉

DecrProtection(r);

Sm+1; . . . Sn;

where r ∈ used(Sm+1; . . . Sn)

However, if r is not needed after the call, we do not do this transformation.

This ensures that if a function f is called with a region r in a state that

would allow it to be removed, and if the last use of r in f is in a call to g, g

will be called in a state that would allow r to be removed.

A simple additional transformation can remove unnecessary calls to IncrProtection(r)

and DecrProtection(r), leaving only the first increment and last decrement.

S1; . . . Sm;

DecrProtection(r);

Sm+1; . . . Sn;

IncrProtection(r);

Sn+1; . . . Sq;

 

S1; . . . Sm;

Sm+1; . . . Sn;

Sn+1; . . . Sq;

We have not yet implemented this transformation.

While we have not done so, it should be possible to implement an extra

analysis pass that will collect, for each call to each function, information

about the protection state of each region involved in the call. Specifically, we

want to know whether its maximum protection count at the time of the call

is zero, and whether its minimum protection count is at least one. If we have
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this information about all calls to a function, then we can optimize away

either the function’s remove operations on a region (if all the callers need

the region after the call) or the “test of the protection count” inside those

remove operations (if none of the callers need the region after the call). If the

calls disagree about whether they need a region after the call or not, we can

also create specialized versions of the function for some call sites, preferably

the ones which are performance critical.

It is important to note that a region’s protection count indicates the

number of stack frames that refer to the region. We modify this counter

only twice per function call: once to increment it and once to decrement it.

This is in contrast to reference counts, which count the number of individual

pointers to an item or region. For example, in RC [18], a region-based dialect

of C, reference counts must be updated for each pointer assignment. To our

knowledge, protection counting is unique to our approach, and avoids the

overhead of incrementing/decrementing a per-item counter as well as the

space required for storing the item’s associated counter.

4.4.5 Higher-Order Functions

Go supports the passing of functions as arguments to other functions. This

higher-order feature forms the basis of Go’s ability to handle function point-

ers, go-routines, anonymous functions, and deferred functions. Higher-order

function calls present our transformation with a tricky case, because in gen-

eral we cannot determine what function will actually be called, so we cannot

determine what regions should be passed in the transformed function call.

For instance, consider a program which has many functions with one input

argument of a pointer type. Our analysis will transform a subset of these

functions, because their input arguments are associated with regions. Now

we have a case where the function signatures might differ for the regions that
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have been transformed:

f(e1)  f(e1)〈r1〉

In this example, the signature remains the same on the unmodified functions:

f(e1)  f(e1)〈〉

In other words, some functions might be unaltered and still have a single

input argument, while other functions might have two. This means that all

single pointer argument function pointers do not match those of the trans-

formed functions.

Our analysis currently handles such cases by first locating when a function

is being assigned to a variable during the interprocedural analysis pass. If

that function requires region arguments, then we insert a trampoline function

at the assignment site instead of assigning the original function. We use

the term “trampoline” to refer to compile time created functions which are

responsible for mapping arguments and their associated region arguments to

a function pointer call. This occurs for both function call arguments and for

assignments to function pointer variables:

g := f(e1)  g := tr〈r1〉{f}

The trampoline, tr, takes exactly one region variable argument for each argu-

ment the original function being replaced had, if that original argument had

a type that could possibly need an associated region (for example, a pointer).

The trampoline also takes another argument for the return value of the func-

tion being replaced, if the return type might possibly be associated with a

variable that needs a region. The body of the trampoline wraps the original

function that would have been assigned, and maps the input arguments of

the trampoline to the input arguments of the original function.
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4.4.6 Interface Types

For a datatype in Go to be an interface type, that datatype must have a set

of methods matching the function prototypes declared by a particular inter-

face definition. Such functionality is implemented by the GCC Go frontend

through the use of an interface method table. Each instance of an object,

which belongs to a interface, contains a pointer to a table of methods. The

table contains a pointer to each method satisfying the interface type. Our

implementation discussed in this chapter allocates all types with an interface

method type from the global region.

Map Datatype

The map datatype was originally managed by a series of runtime functions

provided by Go. These functions do not take into consideration regions that

our system inserts, and which a map might have been allocated from. Since

maps are a built-in datatype, we added the original map functions provided

by the Go runtime, and then modified them to be region-aware. During

code transformation, calls to the original map functions are replaced with

the region-aware versions. This modified functionality allows for the map

datatype to be allocated from regions, and not from the global region.

4.4.7 Returning Local Variables

The Go frontend handles the return of local variables by allocating memory

dynamically and returning the address safely. Since the frontend has already

transformed such cases, our analysis handles this situation trivially. We

simply replace the allocation call with our region allocator and transform the

function as we would any other function that returns dynamically allocated

data.
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4.4.8 Region Merging

There are cases during both compile time and runtime where two regions

become associated with one another, such as when a structure is allocated

data from one region, and one of its members is allocated data from another

region. In this case, a region removal of one region before the other can cause

an invalid memory access. If the region containing the member is removed,

but its parent is still alive, then access through the parent to the member is

invalid. To avoid such situations the related regions can be merged; creating

one region from multiple. The primary drawback of region merging is that

more data is associated with the region, therefore some objects will be forced

to live longer than they might have in a region with fewer objects.

Compile time merges occur when our static analysis detects that two for-

mal parameters for a function become associated, as when a member of one

is assigned to a member of another. Our transformation modifies the func-

tion to take one single region for both parameters, and thus merging occurs

seamlessly and without any runtime overhead:

f(e1, e2)  f(e1, e2)〈r1,2〉

Runtime merges occur in two cases. The first case is when our analysis

detects at compile time where a merge might occur. This occurs when a

merge happens in a branching statement. By inserting a routine to merge

data at runtime, based on a conditional, we can reduce the probability that

a large region will be generated. This is less conservative than the compile

time merge which will generate a merged region no-matter-what. We detect

the conditional case similar to the compile time merge mentioned above. A

merge function is inserted into the code in the branch just before the function

call, that requires multiple arguments to be from the same region, is called.

This merge function will be executed during runtime. Unfortunately, runtime

merging is not without some performance overhead. It requires additional
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checks at region removal, as well as the actual merge function responsible for

associating the regions together.

The other runtime merging case occurs when we pass around function

pointer trampolines for supporting higher-order functions. The trampoline

requires all arguments and their associated regions to be passed as input.

Recall that this trampoline wraps the function to be called, and is responsible

for calling the function with the proper arguments. As above, if this wrapped-

function assumes multiple arguments are to be from the same region, a merge

must occur at runtime. Our static analysis cannot determine if the two

arguments passed to the trampoline and then to the wrapped-function will

be from the same region or not. Therefore, a runtime region merge must

be attempted. Our transformation inserts code into the trampoline function

before the wrapped-function is called.

The primary problem with runtime merging is that a program might

have two regions that must be merged, where one of them is the global

region. Merging anything with the global region is bad as it puts memory

allocated from our RBMM region allocator into a region whose data are

garbage collected. Since the garbage collector never allocated the region

data, it cannot remove it. Therefore, any regions that merge with the global

region become memory leaks and will never have their memory reclaimed.

Higher-order functions require dynamic runtime merging. For instance,

the following example will require that R(a) ≡ R(b).

In the above example fn might point to foo where it will require that

R(a) ≡ R(b). For other function pointers passed as an argument, it is possible

that R(a) 6= R(b) and that sound. In this case we must dynamically merge

R(a) and R(b) at runtime if fn is a pointer to foo. If we were not to do this,

a dangling situation could arise if R(b) were to be removed before R(a).
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func f oo ( a , b ∗Thing ) {
a . next = b

}

func doStu f f ( fn func (∗Thing , ∗Thing ) ) {
a := new( Thing )
b := new( Thing )

// ’ fn ’ i s a f unc t i on pointer ,
// in t h i s case assume i t i s to ’ foo ( ) ’
fn ( a , b )

// ’ a ’ i s no l onger needed , but ’ b ’ shou ld remain
bar (b)

}

4.4.9 Multiple Specialization

Caution must be taken when analyzing function calls that belong to libraries

not compiled by a region-aware compiler. Since our modified compiler (gccgo

plugin) might not have access to the library source code, we cannot recom-

pile the library to make it region enabled. Any allocations in such external

libraries will come from Go’s garbage collector. Consider the case where an

RBMM allocated structure is passed as a pointer to an external function in a

non-region-aware library. If this library assigns a Go collector allocated field

to this argument, then the field’s memory might be immediately reclaimed

during Go’s next GC cycle. This occurs since the only access to the field

might be from the RBMM allocated structure which is outside of the mem-

ory space of Go’s GC. Therefore, Go’s GC will never be able to reach the

allocated field from a root-set variable during a memory scan, and incorrectly

think that its memory can be reclaimed. To avoid this case, any arguments

we pass, or receive as a result, to an external library must be allocated from

the global region (which uses Go’s garbage collector to allocate data). In ad-

dition, we cannot pass region arguments to external library’s since we cannot
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transform or specialize any functions in these pre-compiled binaries.

Consider the case when a function pointer variable is passed to a func-

tion that is part of another Go library or module that was not compiled

with a region-aware compiler. If this external library does not have region-

aware source code, our transformation cannot pass a region-specific function

or datatype. Such cases would require that the functions in the external

library file to know how to pass region data to the function pointer input ar-

gument, information which these non-region-aware object files do not have.

To avoid passing region-aware data to non-region-aware code, we specialize

the function that the function pointer refers to. The specialized copy is never

transformed by our region analyses, therefore all allocations will come from

the garbage collector. In the case that the external object file was compiled

with a region-aware compiler, we can pass region-specific data, such as the

trampoline for the function pointer as mentioned in Section 4.4.5.

4.4.10 Go Infrastructure

Go programs can be made up of multiple object files. These object files form

the basis of libraries, or packages, for Go. As previously mentioned, these

files may or may not have been compiled using a region-aware compiler. In

the case where the foreign package was not compiled with a region-aware

compiler, any information which might contain region data, such as func-

tions or instances of complex objects (structures or interface instances), can-

not be passed to the external object file. In the case we do compile these

packages and create our own Go object file, our transformation can pass

region-aware data. During our transformation our analysis data is added as

another ELF section as part of the object file that the gccgo compiler creates.

The additional information denotes the region-modified functions and which

arguments and region arguments are associated with that function. During

the interprocedural analysis pass, we can query this information and pass

arguments and their associated regions to functions in the external object
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Benchmark GC RBMM

Name LOC Repeat Alloc Mem Collections Regions Alloc% Mem%

binary-tree-freelist 84 1 270 227M 3 1 0% 0%

gocask 110 100k 56M 3.8G 97k 700,001 0.5% 0.1%

password hash 47 1k 160M 13G 145k 5,001 ˜0% ˜0%

pbkdf2 95 1k 115M 8G 92k 12,001 0% 0%

blas d 336 10k 6M 890M 11k 57,0001 9.2% 9.1%

blas s 374 100 49K 5M 58 5,001 10.1% 21.0%

binary-tree 52 1 607M 19G 282 2,796,195 ˜100% ˜100%

matmul v1 55 1 6K 72M 10 4 96.0% 99.9%

meteor-contest 482 1k 3M 165M 2k 3,459,001 ˜100% 99.9%

sudoku v1 149 1 40K 12M 110 40,003 98.8% 99.2%

Table 4.1: Information about our benchmark programs

file.

4.5 Evaluation

To test the effectiveness of our implementation, we benchmarked a suite of

small Go programs. (We cannot yet test larger programs due to our as yet

incomplete coverage of Go.) The benchmark machine was a Dell Optiplex

990 PC with a quad-core 3.4 GHz Intel i7-2600 CPU and 8 GB of RAM,

running Ubuntu 11.10, Linux kernel version 3.0.0-17-generic. We used GCC

4.6.3 to run our plugin and compile the benchmarks, but linked with GCC

4.6.1 libraries supplied with the operating system.

Table 4.1 has some background information about our benchmark pro-

grams. Some of these are adaptations of Debian’s “Computer Language

Benchmarks Game” provided by the GCC 4.6.0 Go testsuite and aimed

at measuring language performance (binary-tree, binary-tree-freelist,

meteor-contest). The matmul v1 and sudoku v1 applications are from

Heng Li’s “Programming Language Benchmarks” [44], and the remaining

programs are from libraries: Michal Derkacz’s blas d and blas s [12], Dmitry
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Benchmark MaxRSS (megabytes) Time (secs)

Name GC RBMM GC RBMM

binary-tree-freelist 891.84 892.01 (100.0%) 12.4 12.2 (98.4%)

gocask 27.45 27.63 (100.7%) 71.6 69.7 (97.3%)

password hash 26.60 26.80 (100.7%) 119.0 119.1 (100.1%)

pbkdf2 26.37 26.58 (100.8%) 71.4 71.6 (100.3%)

blas d 25.87 26.14 (101.0%) 5.4 5.4 (100.0%)

blas s 26.05 26.29 (100.9%) 12.2 12.1 (99.2%)

binary-tree 1323.74 1196.51 (90.4%) 79.2 14.7 (18.6%)

matmul v1 313.03 307.87 (98.4%) 11.7 11.7 (100.0%)

meteor-contest 27.41 27.11 (98.9%) 11.0 11.0 (100.0%)

sudoku v1 26.96 26.65 (98.8%) 15.6 16.5 (105.8%)

Table 4.2: Benchmark results

Chestnykh’s passwordhash and pbkdf2 [8], and Andre Moraes’ gocask [47].

The Name and LOC columns of the table give the name of the benchmark,

and its size in terms of lines of code.

The inputs provided by the GCC suite for some of the programs are so

small that they lead to execution times that, due to clock granularity, are too

small to measure reliably. We gave some of these benchmarks larger inputs

than the ones in the GCC suite. Where this was impossible or insufficient,

we modified the program to repeat its work many times; the Repeat column

shows how many.

The Alloc and Mem columns give respectively the number of objects allo-

cated by each iteration of the program, and the amount of memory requested.

These numbers were measured on the original version of each benchmark

program, which used Go’s usual garbage collector. The Collections columns

gives the number of collections in each iteration. (For the gocask bench-

mark, different runs of the program do different numbers of collections, due

to the use of parallelism by a library.)

The last column group describes the results of our region analysis and

its effects. The numbers come from a version of each benchmark program
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that was compiled to use our RBMM system. The Regions column gives

the number of regions our analysis infers for a single run of the program;

the global region counts as one of these. The Alloc% column says what

percentage of the allocations made by the program at runtime are from a non-

global region, and therefore handled by our system. (The rest, the allocations

from the global region, are handled by Go’s usual garbage collector.) The

Mem% column says what percentage of the bytes allocated by the program

at runtime are from a non-global region.

Table 4.2 contains our main performance data. Both column groups in

this table compare the performance of each benchmark when compiled to use

Go’s usual garbage collector (the columns labelled GC) and when compiled

with our experimental RBMM system (the columns labelled RBMM, which

also show the ratio between the GC and RBMM results). The column group

named “MaxRSS” reports the maximum size, in megabytes, of the resident

set of the program at termination, as reported by the GNU “time” command.

Likewise, the column group named “Time” reports the wallclock (elapsed)

execution time of each benchmark in seconds.

We generated the two versions of each benchmark by compiling them

with gccgo without any command line options beyond those selecting GC or

RBMM, so all the programs were built at the default optimization level. To

avoid measuring OS overheads, we disabled any output from the benchmarks

during the benchmark runs. To eliminate the effects of any background loads,

both the MaxRSS and Time results are averages from 30 trials.

The gccgo runtime in Ubuntu’s libgo0 4.6.1 provides a stop-the-world,

mark-sweep, non-generational garbage collector. As usual, collections occur

when the program runs out of heap at the current heap size. After each

collection, the system multiplies the heap size by a constant factor, regardless

of how much garbage has been collected.

We measured the base memory overhead of our RBMM system by com-

piling a Go program with an empty “main” function. This produces a binary
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of 13 kb; using GNU “Time” we find that the base MaxRSS value is 25 MB.

The “Collections” column shows the number of times Go’s garbage collec-

tor was woken up. The RBMM implementation only performs GC for data

allocated from the global region, mostly by libraries that were compiled with-

out RBMM. These counts were obtained from a single run of the benchmark,

and do not reflect an arithmetic mean.

We used the numbers in the Alloc% and Mem% columns to cluster the

benchmarks into three groups; the benchmarks in each group are sorted

by name. For the programs in the first group, our system does virtually

all memory allocations from the global region, handing responsibility for

memory allocations back to Go’s garbage collector. For the programs in

the second group, we do some allocations from non-global regions. For the

programs in the third group, we do virtually all allocations from non-global

regions, hardly using the garbage collector at all.

The benchmarks in the first two groups typically need more memory with

RBMM than with GC, but the difference is small, and does not depend on

how much memory the program allocates. This MaxRSS difference has two

sources. The first source is code size. The RBMM versions of the benchmarks

have more code than the GC versions, for two reasons: first, the library

that contains the implementation of all RBMM operations is included in the

RBMM versions of benchmarks but not the GC versions, and second, the

transformations of Section 4.4.4 only increase code size, and never decrease

it. (The first effect is constant at 72 KB, while the second scales with the size

of the program.) Since even a Go program that does nothing has a MaxRSS

of 25.48 MB, due to the size of all the shared objects (such as libc) linked

into every Go program, the benchmarks that report a MaxRSS around 26 or

27 MB in fact use about 1 or 2 MB of data. Therefore, for these programs,

code size differences are a large part of the overall differences in MaxRSS (the

maximum such difference is only 270 KB). The second source of difference

in MaxRSS is that the RBMM versions need to allocate region pages, and
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since these programs do relatively few allocations using regions, not all the

memory in these pages is used.

The MaxRSS results for the benchmarks in the third group show that if

a program makes enough use of region allocations, the RBMM system can

deliver an overall saving in memory usage. On all of these programs, the

savings we achieve by freeing regions right after they become dead outweigh

the extra costs increased code size and additional internal fragmentation. For

one of these benchmarks, binary-tree, the saving is pretty significant. For

the other three, the overall saving is more modest, but for meteor-contest

and sudoku v1, the saving in the part of the RSS we have control over, the

part above the 25.48 MB RSS of the program that does nothing, the relative

saving, is in fact quite significant.

With respect to timing, we get a big win on binary-tree, a program that

was designed as a stress test for garbage collectors. It allocates many small

nodes, which the GC system must scan repeatedly. The RBMM version can

put all the nodes in regions where their memory can be reclaimed without

any scanning. This makes the RBMM version more than five times as fast

as the GC version, while using about 10% less memory.

Another version of this program, binary-tree-freelist, has its own

built-in allocator, including a freelist; when a memory block is no longer

needed, this version puts it into its own freelist, which is stored in a global

variable. Later allocations get blocks from the freelist if possible. This en-

sures that all memory blocks ever allocated are not just reachable, but also

potentially used throughout the program’s entire lifetime, which makes this

a worst case for any automatic memory management system. Our region

analysis detects that all this data is always live, so it puts all the data al-

located by this benchmark into the global region, which is handled by Go’s

garbage collector. So in this case the RBMM and GC versions actually do the

same work and consume the same memory. However, the exact instruction

sequences they execute do differ slightly, so their timing results differ too,
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probably due to cache effects. The results on this benchmark tell us that in

this benchmarking setup, this speed difference of 1.6% is in the noise, and is

not a meaningful difference.

We get a slightly higher speedup, 2.7%, for gocask. Since this program

does allocate some memory from a non-global region, this speedup could

conceivably result from region allocations, but since this program does very

few of those, this speedup figure is also very likely to be noise. The same is

true for all the deviations from 100% for all the other programs in the first

two groups.

In the third group, one program, binary-tree, gets a spectacular, more-

than-five-fold speedup, two have no change in speed, and the fourth, sudoku v1,

gets a slowdown.

The original, GC version of binary-tree allocates a lot of relatively

long-lived memory: it has the biggest MaxRSS of all our benchmarks. Each

GC pass has to scan all this memory. The RBMM version of this program

allocates all these nodes in regions, whose memory can be recovered without

scanning their contents. Since the GC version spends most of its time in this

scanning, avoiding these scans gives the RBMM version its huge speedup.

The next program in this group, matmul v1, has very few allocations and

very few collections: apparently, most of the few blocks it allocates are very

long lived. Because of this, the GC version spends a negligible fraction of its

runtime scanning the heap and freeing blocks, so the effect on the program’s

overall runtime would also be negligible even if the RBMM version sped up

this fraction of the program’s runtime by a factor of infinity.

The meteor-contest program does about three and a half million allo-

cations. In the RBMM version, each of these allocations has its own private

region, so this version of the program does three and a half million region

creations and removals. Hence, it recovers the memory of every block one

by one, just like the GC version. The fact that we do not suffer a slowdown

on this benchmark shows that our region creation and removal functions are
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efficient.

The sudoku v1 benchmark puts almost all of its memory in regions, and

this allows it to use less memory than the GC version. Nevertheless, the

RBMM version of this benchmark is slower than the GC version. We believe

this happens because this benchmark has many function calls that involve

regions, and the extra time spent by the RBMM version reflects the cost of

the extra parameter passing required to pass around region variables.

4.6 Summary

In this chapter we have introduced a novel approach to fully automatic mem-

ory management for the Go programming language employing region-based

storage. It is based on a combination of static analysis to guide region cre-

ation, and lightweight runtime bookkeeping to help control reclamation.

Traditional region analysis algorithms propagate region information from

callees to callers and vice versa. This means that any change to the program

source code may require reanalysis of many parts of the program. If some

of these reanalyses yield changed results, then these changes will have to

be propagated through the program’s call graph. Reanalysis can end only

when it reaches a fixed point. In contrast, our system propagates information

only from callees to callers. This means that after a change to a function

definition, we only need to reanalyze the functions in the call chain(s) leading

down to it. Chapter 5 extends the concepts presented in this chapter.
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Chapter 5

Enhancing Our Go RBMM

System

But wait! There’s more!

Billy Mays

5.1 Introduction

I
n this chapter we introduce enhancements to our RBMM system defined

in Chapter 4. First, we modify our unification algorithm to allow a

single object to belong to multiple regions, if such a structure contains

pointers to other data types. Secondly, we try to improve our memory foot-

print by solving the memory bloat and infinite (global) region problem. For

the latter problems, we introduce a garbage collector, which is capable of

reclaiming unreachable (dead) objects from regions. Ultimately, this combi-

nation of RBMM and GC tries to achieve the advantages of both systems

while avoiding the disadvantages. Lastly, we introduce a novel means of

reclaiming individual elements from array segments whose elements are no

longer reachable.

By combining RBMM and GC we present three contributions, which

make our work novel:

• We propose a new way of combining GC and RBMM, with less overhead

than similar systems [26].
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• Our algorithms support partial collections: recovering memory from

some regions, but not all.

• We enable the collection of segments of arrays. In languages that sup-

port slices, it can happen that some elements of an array are live and

others are not. We show how to recover the memory occupied by the

dead elements, at a low cost.

While our modifications are implemented for the gccgo Go compiler, the

techniques and information presented in this chapter should be applicable to

any statically typed language, with some modifications as necessary.

5.2 Enhancing Our Existing Analysis

Our initial RBMM system utilized a unification method that placed all items

into the same region if there existed a points-to association between them.

This means that any item that contained a pointer as a field, would also share

the same region with the field. While this unification is simple to implement,

it can be made more precise. Recall that we want to free items as soon as

possible to produce a smaller memory footprint. In the case of structures

that can contain pointers to other items, we want to allocate the data for

its pointer objects from separate regions. This produces a situation where a

structure can be reclaimed in pieces. For example, consider a linked-list. If

we can separate its skeleton from the data, then the skeleton can be reclaimed

separately from its data.

To accomplish this enhancement we modified two rules in our semantics

as presented in Chapter 4. Originally, the rules were defined as in Figure 5.1.

Our modified rules listed seen in Figure 5.2.

As you can see, this rule change is rather simple; however, the cost of

implementing this modification was high (it took a long time). For instance,

functions no longer require a single region per argument, instead, they now
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S[[v1 = v2.s]]ρ = (R(v1) = R(v2))
S[[v1.s = v2]]ρ = (R(v1) = R(v2))

Figure 5.1: Original constraint rules

S[[v1 = v2.s]]ρ = (R(v1) = R(v2.s))
S[[v1.s = v2]]ρ = (R(v1.s) = R(v2))

Figure 5.2: Modified constraint rules

require multiple arguments per region (including any regions that might be

needed for the function’s return value).

5.2.1 Increasing Conservatism for Higher-Order Func-

tions

In our original implementation discussed in Section 4.4.5 we inserted tram-

poline functions that would dynamically merge two regions at runtime if any

of the variables between regions became associated to each other. We noticed

that runtime merging was harming our performance. Additionally complicat-

ing matters is the case when a non-global and the global region could become

merged. This is dangerous, as that means all data from the non-global region

would never be reclaimed, not even by Go’s existing garbage collector. The

latter occurs because the memory was allocated from our RBMM allocator

and when RBMM is not used to manage it (e.g . the allocations are merged

into and belong to the global region), Go’s garbage collector has no con-

cept of these addresses, thus it cannot reclaim our RBMM allocated objects.

Therefore, runtime merging can effectively introduce memory leaks into a

program.

To simplify and eliminate the latter problems we relaxed our semantics

such that all variables that are passed as arguments to a function pointer

belong to the global region. This is overly conservative but means that Go’s

garbage collector can be used to allocate and manage their memory (reducing
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memory leaks). This also means that we eliminate the overhead of runtime

merging, effectively replacing such overhead with that of a garbage collector.

In this chapter we introduce a region-aware garbage collector, therefore we

can now collect data from the global region, and not rely on Go’s existing

collector for such matters. Figure 5.3 describes this change in terms of our

semantics.

S[[v0 = fnp(v1 . . . vn)]]ρ =
∧n

i=0(R(vi) = G)

Figure 5.3: Added constraint rule for function pointers

5.3 Combining Regions and Garbage Collec-

tion

Automated memory management systems can be implemented using either

RBMM or GC. A comparative analysis of the two approaches is complex, but

the big picture is that there is a time/space trade-off between them. Since an

RBMM system does not require a scan of the program’s memory at runtime,

it can result in a faster running executable than a GC system. However,

RBMM suffers from the region bloat problem as discussed in Chapter 3.

But, the situation is more complicated than that. Ideal RBMM should

not only produce smaller execution times, but should be able to realize a

potential to use less memory than GC. This potential is due to two facts:

• RBMM needs considerably less memory for its own bookkeeping, and

• RBMM can decide what memory to free based on what the program

will need in the future, rather than simply on what it can currently

access.

In principle, RBMM should be able to reclaim memory in relatively small

chunks, resulting in a flatter memory footprint. However, there will always

be programs exhibiting behaviours that favor GC.

98



Because the lifetime of a memory item is in general undecidable, region

analysis must conservatively approximate it. In some cases, the approxima-

tion is too conservative, creating long-lived regions in which many items are

no longer needed. In particular, items referred to by global variables are

placed in a region which will be kept until the program exits. Several previ-

ous studies [25, 5] have shown that such long-lived regions can accumulate

large numbers of now-dead objects beside some live ones, increasing the pro-

gram’s memory footprint significantly, and in some cases beyond the limit of

acceptability.

In Chapter 4 we treated the region containing global variables specially

by managing it with Go’s existing built-in GC system, but this approach

has two shortcomings. First, it does nothing to reclaim unused items in

other long-lived regions, and second, it leaves us with two non-interoperable

memory management systems. The reason why the second point matters is

that it prevents us from implementing an optimization we believe may be

important. In certain cases, one code path may permit two regions to be

kept separate, while a less common code path may require the analysis to

consider them to be the same region. Keeping them separate may permit

one region to be reclaimed much earlier than the other, so we would prefer

to do this. However, we cannot do this if we cannot merge the two regions at

runtime, and indeed that is the case when one of the “regions” is managed

by Go’s builtin GC system.

The goal of the work presented in this chapter is to create an RBMM

system that allows the contents of regions (especially long-lived regions) to

be garbage collected. We still expect that most regions will be short lived, and

that most item will be recovered without GC, when the regions containing

them are removed. Since we expect GC operations to be the exception and

not the rule, we want region operations (the creation and destruction of

regions, and allocation of memory from regions) to be as fast as they are in

our previous RBMM system (Chapter 4). The existence of the GC system
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Figure 5.4: Region data structure

should not have a significant impact on the performance characteristics of

regions that are never garbage collected. A secondary goal is to make our

GC system a moving collector, to improve locality of reference and to reduce

internal fragmentation.

Previously all flexipage headers contained a pointer to the next free byte.

This pointer is redundant and is not necessary. In fact, our system only needs

one pointer to the free space per region. Therefore, another modification we

have implemented is that this pointer is stored in the region header. This

eliminates one pointer from the flexipage header. While this might not be

a grand savings of memory, every little bit helps reduce our system’s overall

footprint.

5.3.1 Managing Ordinary Structures

We want our garbage collector to be a moving collector. Such a collector

needs to know which parts of each item are pointers and which are not. The

simplest way to give it this information is to include type information next to

every item in every region [26]. Adding a type description next to every item

in a region would significantly increase memory consumption. Since each

region will contain values from only a limited set of types, we can greatly
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reduce the space overhead of type information by storing the description of

each type that can occur in the region just once, and associating all values

of that type in the region with that description. In other words, we split

each region into a set of zones, with one zone per type that can appear in

the region.

If there are N types that can appear in a region, then this scheme costs

us the memory occupied by N zone headers, each of which is 72 bytes in

size. Typical values of N (from our test cases) range from 1 to 25, so the

typical overhead ranges from 72 to 1,800 bytes per region. This is a fixed

cost. On the other hand, the amount of memory that this scheme allows

us to save scales with the amount of data in the region. For example, if a

region contains 100,000 8 byte items (800 KB total) and 200,000 24 byte

items (4.8 MB total), then, by not having to identify the type of each item

with an 8 byte pointer to type information, we save 300,000 * 8 = 2.4 MB,

which in this case represents 50% overhead. On other cases, the percentage

will be different. However, it should be clear that our scheme saves not

just significant amounts of memory, but also the time needed to fill in this

memory.

While GC systems have used type-specific zones before, to the best of

our knowledge, this is the first time they have been applied to regions in a

system using RBMM.

Region inference can give us, for each of the regions it creates, the set

of types whose values may appear in the region. In fact, it is guaranteed

to do so, unless the program uses language constructs (such as interfaces)

that introduce polymorphism and thus hide the actual types of some values

from the compiler. Until Section 5.5, we will assume that such constructs

are absent, and that we do know the set of types in each region.

Figure 5.4 shows the effect of splitting a region into a set of zones, one

for each type in the region, each zone holding all the items of that type in

the region. Each zone consists of a list of flexipages, and has a header that
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contains the following slots:

• A pointer to the header for the whole region.

• A pointer to a description of the type of the items in the zone, what we

call a typeinfo. These typeinfos are read-only data structures created

by the compiler. Each typeinfo contains the size of the type, if the type

is a pointer, and a flag letting us know if the type is a special builtin

(e.g . slice). Three other values in the typeinfo are useful for managing

structures; these additional fields let us know the number of fields, the

offset of the field, and an index in the typeinfo table referring to the

next field in the structure.

• The number of items of this type that fit in a single page, i.e. in a

flexipage of the minimum size. This is calculated from the page size,

the size of flexipage headers, and the size of each item. We will show

the exact formula later.

• A pointer to the start of the most recently allocated flexipage in the

zone. Note that we also maintain a pointer to the last page in the

zone’s flexipage list. This allows us to quickly return this list to the

global freelist of pages when we reclaim the zone. To aid cache locality,

we treat a zone’s flexipage list ike a stack. The most recently used

page is at the top of the stack, and after zone reclamation the freelist

will have that most recently used page at the top of its stack. Upon

the next request for a free page, the top of the freelist will be returned

which happens to be the most recently used free’d page.

• During a collection, the pointer above defines the list of flexipages that

act as the from-space. We also have a corresponding pointer that serves

to define the to-space. This second pointer is used only during collec-

tions. As with the former, we also maintain a pointer to the last page

in the to-space for the reasons discussed in the previous bullet.
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• A flag telling us if the zone is to contain a special data structure that

we garbage collect differently from all other types (e.g . slices). Note

that this field is also in the typeinfo and we should be able to optimize

it away.

Therefore, a zone in this modified approach acts similar to what a region did

in Chapter 4, with the exception that now there is a zone for each type that

can appear in the region. The region now becomes just a container of zones,

and the memory that is distributed via region allocation will come from a

flexipage located in the appropriate zone of the region.

The region header contains:

• The number of zones in the whole region.

• Two bits that are needed only during collections. The RegionBeing-

Collected bit is set iff the collection is attempting to recover memory

from the region, while the RegionNeedsTracing bit is set iff the GC

algorithm needs to traverse the contents of the region in order to find

live items in the regions being collected. Note that our implementation

experimented with in this chapter uses just a single boolean flag to

determine if a region has/is being garbage collected. When we build

our system to not use our GC, this flag is not in the resulting build.

• An array of the headers of the region’s zones.

• An identifier which is used as both a sanity check and to tell if the

region is the global region.

• A pointer to the next region. This helps our runtime maintain a list of

free regions that can be reused.

• A size which reflects how big the region and its array of zone pointers is.

This, as with the previous bullet above, helps our runtime manage the

list of free regions that can be reused when a CreateRegion()operation

is called.
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Creating a Region

One of the jobs of region transformation is to insert code to create regions

just before the points in the program where the region analysis determines

that those regions are first needed. The tasks of the code to be inserted are:

• to allocate memory for the header of the new region,

• to initialize all the components of the region header, and

• to return the address of the header.

As shown in Figure 5.4, the size of the region header is a simple function of

the number of zones in the region.

Most RBMM systems put the region header at the start of the first flex-

ipage of the region. We cannot do that, because a region with n zones

effectively has n “first” flexipages. We could pick one, but we would have to

treat that one differently from the others (for example, because that flexi-

page would have room for fewer items than all other flexipages in that zone).

We sidestep these problems by allocating the region headers from a memory

pool (Pool 2) that is separate from the pool that supplies the flexipages for

zones (Pool 1).

When a call to a region creation operation is inserted into the program

at compile time, the number of zones that the region must contain is passed

as a static argument. When the region is created at runtime, this value is

used to allocate the proper number of zones for the region.

To reduce memory overhead, all zones are created with NULL pointers to

their flexipages. When the first request of memory from a zone is made, the

zone will request data from our runtime or from a freepage in our allocator’s

free page list (freelist).

The zone most also contain the type information (typeinfo) about the

allocations it makes. Such information provides the sizes and offset of struc-

ture fields of the data type. Our analysis generates a typeinfo table that is
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inserted into the binary and is available at runtime. During zone initializa-

tion at runtime the zone’s typeinfo is set to point to the proper typeinfo in

the table.

The following pseudocode illustrates how our new CreateRegion()function

looks:

CreateRegion(int n_zones) {

int i;

reg *r = malloc(sizeof(Region) + sizeof(Zone) * n_zones);

for (i=0; i<n_zones; i++) {

r->zones[i] = NewZone(i); /* This will set the typeinfo into the zone */

}

}

Allocating from a Region

In traditional RBMM systems, each allocation (the equivalent of a call to

malloc) specifies from what region the new item should be allocated from,

by providing a pointer to the header of that region. In our system, the

parameter list of the allocation function includes not just a pointer to the

region header, but also the zone number that corresponds to the allocated

item’s type in that region. From that, the allocation function can look up

the zone’s header, and the typeinfo for the type, which gives the size of the

item and thus the number of bytes to be allocated. The allocation function

gets this number of bytes from the last allocated flexipage of the zone if it

has room; if it does not, or if the zone has no allocated flexipages yet, it

allocates a new flexipage and adds it to the zone first.

Determining which zones each region must have is an added responsi-

bility of the compile-time region analysis. Note that this must be a global

analysis, since different modules may require the inclusion of different types

in each region. Further complicating matters, each allocation must specify

a single offset in the region structure to find the appropriate zone for that
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allocation. This offset must be correct for every region that may be used

for that allocation, so the offset for each type allocated in a function must

be consistent among all regions that may be used for that allocation in that

function. Ensuring this, while minimizing the number of zones in each re-

gion, is a complex optimization problem. The implementation discussed in

this chapter eases this complexity by requiring every region to contain zones

for every type that can belong to a region. This is a gross approximation

since it creates many regions with unused zones; however, this is trivial to

implement and will allow us to test the combination of RBMM and GC.

Reclaiming a Region

Reclaiming a region is simple: we release every flexipage in every one of the

region’s zones back to Pool 1, and we release the region header back to Pool 2.

Finding TypeInfos

Since we want to use a type-accurate (non-conservative) collector, we need to

be able to find the type of an item from its address. To this end, we maintain

a data structure we call the zone-finder, which is a variant of the BIBOP or

big bag of pages idea [55]:

• Every item the collector needs to trace on the heap is stored in a flex-

ipage of a zone of a region.

• Both the size and the starting address of every flexipage is an integer

multiple of the standard page size. (That is, flexipages are aligned on

page boundaries.)

• Conceptually, Pool 1, the pool from which flexipages are allocated, is

a contiguous sequence of pages.

• We pair every page in Pool 1 with a shadow word in a new pool, Pool 3,

which is the zone-finder.
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– If a page in Pool 1 is not currently in use, then the shadow word

corresponding to it will be NULL.

– If a specific page in Pool 1 is currently in use as the first page of a

flexipage in zone z in region r, then its shadow word will point to

the zone header for z. From there, we can reach both the header

of region r and the typeinfo describing the type of the items stored

in zone z of region r.

– If a specific page in Pool 1 is currently in use as the non-first page

of a flexipage in zone z in region r, then its shadow word will be a

pointer to the shadow word corresponding to the first page of that

flexipage, but tagged to indicate that it points to a shadow word

rather than a zone header. This occurs because our algorithm for

performing address-to-zone mapping treats the high bits of the

address as an index into our map. The index calculation works by

assuming all pages are of uniform size (currently 4KB). Recall that

flexipages must be able to be allocated in sizes larger than 4KB

if the program requests a extra-large allocation. Our mapping is

aware of this, and will set a bit in the map as mentioned above

allowing us to locate the true page start and not potentially the

middle of a extra-large flexipage.

Since zone headers and shadow words are both always stored at aligned

addresses, we use the least significant bit as a tag to distinguish between

the last two cases.

Conceptually, Pool 1 and Pool 3 are arrays with corresponding elements.

However, if we want the pools to grow beyond their initially allocated sizes,

we must allow them to be stored non-contiguously. For our purposes, pretty

much any of the many possible ways of simulating contiguous memory will

do. Our implementation represents both Pool 1 as a sequence of pages, and

Pool 3 as a large statically allocated array. The latter is fine for experimental
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purposes, but is a limitation that should be lifted to make our system more

flexible for real-world use.

Managing Redirections

We garbage collect each zone using a semispace algorithm [16]; that is, we

copy every live item out of the flexipages currently allocated to the zone

(the from-space), into a fresh new set of flexipages (the to-space). When

this traversal of live items arrives at an item, it needs to know whether that

item has been copied to the to-space yet. (Copying a live item to the to-

space several times would change the aliasing between items, which would

be incorrect.) We need one bit per item for this information. These bits

are required only during GC, and could thus be kept in temporary data

structures, but the management of these data structures would take extra

time. To avoid this and to keep the algorithm simple, we reserve space for

these bits in each flexipage. The space cost is usually quite small, 1% or less:

one bit per item, whose size is virtually always at least 64 bits, and most

often 128 bits or more. Therefore the structure of each flexipage is:

• a fixed size flexipage header, which includes the size of the data portion

of the page excluding the flexipage header size,

• an array of n redirection bits, one bit per item,

• any padding required to align the following items, and

• an array of n items.

The formula for computing n and the number of padding/alignment bytes

before the first item bi is:

n =

⌊

(bytes per flexipage − bytes per header) ∗ 8

1 + (bytes per item ∗ 8)

⌋

bi =

⌈

bytes per header + ⌈n
8
⌉

alignment

⌉

∗ alignment
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Algorithm 1 Preserve data in an item

Require: base: The address of the start of an item to preserve
Require: type: The type of that item
Require: fpp: Points to the flexipage containing that item
Require: zhp: Points to header of the zone containing that item
function Preserve(base, type, fpp, zhp)

size← SizeOf(type)
newbase← AllocFrom(ToSpace(zhp), size)
CopyMemory(newbase, base, size)
RedirectBit(fpp, base)← True

∗base← newbase ⊲ Set redirect pointer
return newbase

where all items begin at an address divisible by alignment .

Given the start address of a flexipage, address arithmetic can compute

the location of the RedirectBit for an item in that flexipage, and vice

versa.

Between two garbage collection cycles, each RedirectBit in each flex-

ipage contains a value of zero. When the traversal encounters a live item

whose RedirectBit is zero, it copies the item to the to-space, and sets its

RedirectBit to a value of one. To let later parts of the traversal know not

just that the item has been copied but also where it has been copied to, the

traversal also records the address of the item in to-space in the first word of

the item. (It is ok to overwrite any part of the user data stored in the old

copy of the item, since it will not be referred to anymore.) All this is shown

in Algorithm 1.

Of course, this assumes that all items are big enough to hold a pointer.

This is why our system allocates a word (the size of a pointer) even for

requests that ask for less memory than that. It is not alone in this; virtually

all other memory management systems do the same, including the usual

implementations of malloc.
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When a GC cycle is complete, all the pages of all the flexipages of the

collected regions are returned to the freelist of Pool 1. Before any flexipage

is reused, all its bits will be set to zero, including its redirection bits.

5.3.2 Collecting Garbage

The top level of our GC algorithm is shown in Algorithm 2. Its first parameter

is the root set, i.e. the set of all the registers, stack slots and global variables

that may contain pointers to items in regions. (We start by making copies of

the original register values in memory, and copy the possibly-redirected values

back to the registers when we are done.) The second parameter specifies

the set of regions from which this invocation of the collector should recover

memory. Currently we collect from all regions; however we explain a more

advanced algorithm below which permits a subset of all regions to be collected

from. This set need not be the set of all regions. If the runtime responsible for

controlling the collection process expects that some regions have very little

garbage, it can omit them from GC regions . A region left out of GC regions

will still be traversed (traced) by our algorithm if such traversal may lead to

live items in regions which are in GC regions , but

• the collector will not need space to store copies of all the live items in

those regions, reducing memory requirements when those requirements

are otherwise at their peak, and

• the collector will not need to spend any time copying all the live items

in the regions to the to-space, and updating all the pointers to the

moved items.

The algorithm starts by recording, in each region header, whether the region

is being collected in this collection, and whether it needs to be traced.

After that, Algorithm 2 finds all items in the collected regions that are

reachable from the roots, using Algorithms 3 and 4, which we discuss below.
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Algorithm 2 Garbage collect from regions

Require: Roots: The set of root variables
Require: GC regions: The set of regions to collect
function GC(Roots,GC regions)

for all rhp ∈ all regions do
RegionBeingCollected(rhp)←

rhp ∈ GC regions
RegionNeedsTracing(rhp)←

some region in GC regions is reachable from rhp

for all root ∈ Roots do
PreserveAndTrace(root, True)

for all rhp ∈ GC regions do
for all zhp ∈ ZonesOf(rhp) do

Free(FromSpace(zhp))
FromSpace(zhp)← ToSpace(zhp)
ToSpace(zhp)← nil

Together these algorithms preserve each live item in a collected region by

copying it from its original location in a from-space flexipage of one of the

region’s zones to the to-space of that zone, which consists of its own list of

flexipages.

Once all reachable items have been copied, and the pointers to them up-

dated to point to the new copies, the algorithm releases the memory occupied

by the zones’ original set of flexipages. In other words: when collection is

complete the from-space pages are reclaimed/free’d by returning them to the

freepage list so that they can be reused for other zones if necessary.

Algroithm 3 locates live items in the regions being collected and copies

them to the to-space of their zone. The PreserveAndTrace function is

invoked not with the address of the item it is to preserve and trace, but with

a pointer to that address, so that if and when it needs to move the item, it

can update the address that pointed to it. When it is invoked, addrptr will

point either to a root (such as a global variable or a stack slot containing a

pointer), or to a part of the heap that itself contains a pointer. The pointers
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to roots supplied by Algorithm 2 always point to the start of a root item,

as promised by the toplevel = True; pointers supplied by tracing may point

inside (i.e. not at the start of) items, as allowed by toplevel = False. For

example, a pointer field within a structure might not be the first item (start)

of the structure, but could be in the middle of it somewhere. Since we do not

have per-field redirect bits, our system can only detect if the whole object

has been redirected or not.

The value of addr may or may not point into the heap, which in our case

means “into one of the regions.” If it does, then we can use the data structures

described in Section 5.3.1, represented here by the function LookupHeap,

to find out the address of the flexipage containing the item at addr . From

that, the function can use address arithmetic to compute base, the address

of the start of the item (addr may point into the middle of the item). If s is

the size of the items in the flexipage, then

base = fpp + bi+ s ∗

⌊

addr− (fpp + bi)

s

⌋

We need to know base because if we copy the item, we must copy all of it. If

the item ends up moved, the updated pointer must point to the same offset

within the item as it did before.

Given the flexipage pointer, LookupHeap can also use the zone-finder

to find the identity of the zone containing the flexipage. We can then follow

the pointer in the zone header to the header of the region containing it. If

this region is not being collected, then the item will survive the collection,

at its current address, without us doing anything (though we may still need

to trace any pointers inside the item). If this region is being collected, then

Algorithm 2 will free all the flexipages of all the zones of the region, and we

must copy the item to the corresponding to-space, unless this has already

been done. If the redirect bit says that it has not yet been done, then we call

Preserve, the function in Algorithm 1, to copy it to the zone’s to-space.
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Preserve returns the new address of the item, and we set the original

pointer to the item to refer to the original offset from this new address.

Preserve also records both the fact that the copying has been done (by

setting the redirect bit corresponding to this item in its flexipage) and the

address of the new home of the item (in the first word of the item). So the

next time the traversal reaches this item, the redirect bit will tell us that we

do not need to copy the item again, and that we can instead pick up the

new address of the item from the first word in its old copy. In this case, the

traversal will also have traced all the pointers inside the item, so we need

not process them again. We can similarly skip the processing of the pointers

inside the item if the item is in a region from which the regions being collected

cannot be reached either directly or indirectly.

Since we do not garbage collect the places that may contain roots, i.e. the

stack, the global variables, and the registers, we need not concern ourselves

with protecting any item that is not in the heap against being moved. Since

Algorithm 2 will eventually invoke Algorithm 3 on every root, we need not

trace roots when we reach them by following pointers in items. This is just

as well, since those pointers may point inside roots that are structures, and

finding the starts of those structures would be far from trivial.

The last step of Algorithm 3 is to invoke Algorithm 4 on roots and items

on the heap that (a) may contain pointers that lead, directly or indirectly, to

live items in the regions being collected, and (b) are not known to have been

traced before. The traced items may be pointers, for which theAddrsInside

function should return the offset 0. Or they may be structures containing

pointers, for which it should return the offset of all the pointer-valued fields

inside the structure, whether they are fields of the structure itself or of its

parts. We then traverse the items all these pointers point to.

Note that we trace the pointers in the version of the item in the to-space,

not the from-space. That is because in the from-space, the first word of

the item will have been overwritten by the redirect pointer (also called the
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hdr0 0 0 0
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hdr0 0 0 0
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hdr0 1 0 1

hdr0 0 0 0

xptr
yptr

zone hdr

from
to

...

(a) before copying either item

(b) after copying item 1

(c) after copying item 2

Figure 5.5: Example: copying two items to to-space

forwarding pointer).

Figure 5.5 shows an example illustrating these algorithms. Figure 5.5(a)

shows part of the memory as GC begins: the stack contains two pointers,

xptr and yptr, that point to two structures in the same zone, which has one

flexipage. These structures each contain one non-pointer, whose contents

are irrelevant here, and one pointer, which in this case point to each other,

so this is a cyclic data structure. Note the flexipage contains two garbage

structs, and the redirection bits are all 0.
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After Algorithm 2 determines which regions to collect, we process the

root set. We start by calling PreserveAndTrace with xptr. The struct

this points to (“item 1”) is on the heap, in a region to be collected, and the

redirect bit for it is clear, so we Preserve it: we copy it to to-space, set

its redirected bit in from-space, and overwrite the first word of the struct in

from-space with a pointer to the new copy in to-space. We then update xptr

to point to the new copy as well. This is shown in Figure 5.5(b).

Next we call PreserveAndTrace on the sole pointer in the freshly

copied struct. Again this points to a struct (“item 2”) on the heap, in a

region to be collected, whose redirect bit is clear, so we Preserve it, and

update the pointer we followed (in item 1) to point to the new copy. Next

we Trace the newly preserved struct, but this time the sole pointer points

to a struct (item 1 again) whose redirected bit is now set. In this case we do

not preserve or trace the struct, we just look up its new location in to-space,

so we can use it to overwrite the pointer in item 2 (which used to point to

item 1 in from-space).

When Algorithm 2 calls PreserveAndTrace on the second root, yptr,

it finds that the struct it points to, item 2, already has its redirect bit set.

It will therefore update yptr to point to the new location of item 2 in to-

space, but will not trace item 2 again. This will leave the state shown in

Figure 5.5(c). As you can see, copy collection can eliminate internal zone

fragmentations. The garbage that existed in the from-space flexipage has

been eliminated and only live data exist contigiously in the to-space.

5.4 Managing Arrays and Slices

The Go language provides arrays, pointers to arrays, and slices. Arrays

are fixed-size contiguous collections, and array pointers refer to fixed-sized

collections as well, since the type of array pointers includes the number of

elements in the array as well as the type of the elements. On the other hand,
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while the compiler knows the type of the elements of a slice, it does not

know their number; the size of a slice is dynamic. The Go implementation

represents each slice as a structure holding a reference to some element of an

array, as well as a capacity (the number of elements in the slice, starting at

the pointed-to element), and a count (the number of initial elements in the

slice that are meaningful). Thus, slices are simply Go structures comprising

three members, and, except in the optimization we describe in Section 5.4.2,

we treat them as such.

5.4.1 Finding the Start of an Array

Some slices will point to elements in the middle of the target array. The

PreserveAndTrace function needs to know the start address of the item

to be preserved. With scalar items, once we know the start address of a

flexipage, we can use address arithmetic to convert the address of any part

of an item into the address of the start of the item.

We want to prevent duplicating of data when collecting from arrays. If

the data has already been collected (copied), there is a chance that a pointer

into the middle of the array exists and that copying this middle element of

the array would result in duplicated data. This occurs because the array was

copied as a single contiguous element and not as a collection of individual

elements. Therefore, no redirected bits for the elements exist, and duplicate

data could result. As we mentioned earlier, duplicates are dangerous, since

pointers to any of the duplicates would not be guaranteed to have an accurate

picture of the state of the system. For instance, if one of the duplicate data

pieces were to be modified, potentially a subset of the pointers would see this

change, but not all of pointers.

Consider the array and pointer into it depicted in Figure 5.6. Since our

collector does not specify the order from which root variables are to be traced,

it is perfectly fine for our collector to trace p first and then a. From the latter

figure, our collector would first trace a and then p. Since a points to the head
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a
0 1 ... 50 ... 99

p

Figure 5.6: Pointer into the middle of an array

a
0 1 ... 50 ... 99

p
50’

New Sub-region Memory Area

Figure 5.7: Duplicate data after collection

of the array, it can access all elements, therefore the collector must preserve

the entire array. The collector will eventually scan p. Since p points at an

element located within the array, our collector should not copy the element,

as it was previously copied due to a being collected. If the data at p was

copied, it would result in a duplicate as illustrated in Figure 5.7. In the

this figure, if p is modified, it would not be seen by any variables accessing

element 50 from a.

We handle arrays specially, by placing all arrays of a given type (regardless

of length) into a single zone dedicated to arrays of that type. However, this

also means that we cannot find the start of an array by address calculation.

Our solution is to prefix each array with a small header containing just its

size. (Most memory management systems do this for every item; we do it

only for arrays.) When tracing a pointer to or into an array, we can look

up its address in the zone finder, which will give us a pointer to the start of

the flexipage containing the array item. The first item in the flexipage starts

just after the flexipage header. Given the start address of an item, i.e. the

address of its array header, the size allows us to calculate the address of the

start of the next item in the flexipage, if there is one. So we can find the

start address of the array that a pointer points into by traversing through
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the array items on the flexipage. The address we want is the last item start

address we encounter in this traversal that is smaller than the pointer’s value.

5.4.2 Preserving Only the Used Parts of Arrays

Our PreserveAndTrace algorithm treats any reference to any part of an

item as a reference to the entire item. A live variable whose type is an array

or array pointer keeps all the elements alive. For slices, however, we can do

better, provided live slices refer only to a part of the array that the slices

were derived from, and there are no live references to the whole array. In

such situations, we can reclaim the unneeded elements in such arrays, if we

can modify the algorithm we use to trace slice headers. First we present how

we handle slices; later we will return to discuss how array and array-pointer-

valued variables fit into our scheme.

The Go language semantics requires that if an array and slice, or two

slices, shared the memory of some elements before a collection, they must

also share those same elements after the collection. We therefore cannot copy

live array elements individually; we must ensure that contiguous sequences

of live array elements are copied to a new (possibly smaller) array in which

they are still contiguous.

When tracing arrives at a slice header, we know that the array elements

referred to by the slice are live. Unfortunately, we cannot know at that time

whether the elements before and after these in the array are live or dead: it

is possible that they have not yet been visited by the collector, but will be

visited later. In general, we can know which elements of an array are live

and which are dead only once a GC has finished tracing all live data.

We could add an extra pass to the end of every collection, and defer the

copying of array slices until this pass. However, this extra pass would add

significant overhead, because not preserving an array when tracing it would

reduce locality, and because we would need extra data structures to keep

track of the deferred work. These data structures would occupy space during
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each collection, exactly when free space is scarcest. We therefore choose to use

a conservative approximation: when we get to an array, we copy to to-space

the set of array elements that were live at the end of the last collection. This

means that an array element that becomes dead will survive one collection,

but not two.

This optimization needs more information attached to each array item

than what we would need in its absence, which we just described in Sec-

tion 5.4.1. This information consists of:

• ArrayNumBytes, the number of bytes occupied by the item (as be-

fore).

• ArrayNumElts, the number of elements in the array; redundant, as

it could be computed from ArrayNumBytes, but storing it avoids

unnecessary recomputations.

• SeenPrev, an array of ArrayNumElts bits. The bit is 1 iff the cor-

responding element was live at the end of the last collection. Initialized

to 1 when the array is first created.

• SeenCurr, an array of ArrayNumElts bits. The bit is 1 iff the

corresponding element has been seen live during the current collection.

Always initialized to 0; meaningful only during a collection.

• Elements, the elements of the array themselves.

Our optimization modifies Algorithm 3 so that when the collector traces a

slice, it will invoke Algorithm 5 instead of Algorithm 4. This algorithm has a

chance to avoid preserving unneeded elements of the array holding the slice’s

elements, but only if the array is stored on the heap. If it is stored in the

executables read-only .rodata, .data or .bss sections, then the array must be

a global variable. This means that we need not take action to preserve its

storage, and since all global variables are roots, that root either has already
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Elements e0 e1 e2 e3 e4 e5 e6 e7 e8
SeenPrev0 1 1 1 1 1 0 1 1

S2

2
2

S1

2
2

S3

2
4

S4

1
2

Figure 5.8: Copying only the previously live parts of arrays

been or will be traced later, as an array (not as a slice). The array cannot

be on the stack, because the Go compiler performs escape analysis, and this

changes the storage class of any function-local array that a slice may ever

refer to, converting it from stack allocated to heap allocated.

If the array holding the slice’s data is on the heap, we use the algorithms

of Section 5.4.1 (represented by function LookupHeapArray) to find the

address of the flexipage storing the item, and from that, the start of the array

item, and the zone containing that flexipage. From the addresses of the first

elements of the slice and of the array, we can calculate fse, the index of the

first slice element in the array. From that and the capacity of the slice, we

can calculate lse, the index of the last slice element in the array.

Consider the situation when Algorithm 5 is invoked on slice header S1 in

the example in Figure 5.8. This slice has a capacity and count of 2, and its

data pointer points to the element at index 3 in the array. We will thus set

fse to 3 and lse to 4. However, we cannot copy to to-space just the subarray

containing only elements 3 and 4. For example, if we later see a reference to

slice S2, which also has a capacity and count of 2, but its data pointer points

to the element at index 2 in the array, the copies of the two slices must share

the element corresponding to the index 3 in the original array.

The sequence of elements we may need to have contiguous in the copy is

restricted to the neighboring elements that were live at the last collection. In
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our example, the SeenPrev bit vector for the array has a 1 in every position

except the ones at indexes 0 and 6, so the first bit in the contiguous sequence

of 1 bits that includes the 1 bits at positions 3 and 4 is at index fce = 1, and

the last bit in that contiguous sequence of 1 bits is at index lce = 5. This is

why we want to make sure that there is a copy in to-space of the subarray

consisting of elements 1 to 5.

If all of the bits in SeenCurr starting from fce to lce are 0s, then the

subarray has not yet been copied to to-space, so we do the copying then

and there. After figuring out the amount of memory needed for the new

array item, we reserve memory for it in to-space. We then fill in the array

item’s header, its SeenPrev and SeenCurr arrays, and finally the ele-

ments, which we copy from the original array. The SeenCurr array has all

its bits set to 0s: those bits will be meaningful in the next collection, not

this one. We set the SeenPrev bits in the to-space copy only for the array

elements that this slice refers to, since so far these are the only elements that

we know are live.

After we copy all the elements of the subarray from from-space to to-

space, we overwrite the first word in the first element copied in from-space

with the address of the copy in to-space. This ensures that later calls to

TraceSlice arriving at this subarray (e.g ., when TraceSlice is invoked

with S2) will know where the copy is.

Once we have preserved the data in the contiguous elements, we need to

trace any pointers in the meaningful part of the slice. So we iterate over all

those elements, tracing pointers in elements we have not traced before. Note

that we set the SeenPrev bit corresponding to such items even if this call

to TraceSlice did not copy the subarray. In our example, this will happen

when tracing the copy of element 2 during the invocation of TraceSlice for

slice S2. This will tell the next invocation of the collector that the elements

at indexes 1, 2 and 3 are live in the copied subarray; these correspond to

indexes 2, 3 and 4 in the original array.
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The elements in slices that correspond to the difference between the

Count and the Capacity (if there is one) do not contain data that the

program may use, but they must be there, contiguous with the earlier ele-

ments, in case the program expands the slice. If there is a slice S3 that has

a count of 2 but a capacity of 4, and its data pointer points to the element

at index 2 in the array, then we must mark index 4 in the copy (index 5 in

the original) as seen, because if we did not, then the collection after the next

one would recover its memory, which would prevent the correct operation of

any expansion operations on S3.

Since the body of the function after the initial test can rely on the capacity

of the slice being at least one, one of the loops that together iterate i from

0 to cap will set the SeenCurr bit for fse. Since fse is guaranteed to be in

the range fce..lce, all later invocations of TraceSlice on a slice that fits in

that range will know that the subarray in that range has already been copied

to to-space.

Just as our optimization must ensure that we call TraceSlice instead of

Trace when tracing a slice header, we must handle two other cases specially

as well. The first is arrays on the heap, or pointers to them. For these,

we need to invoke a version of TraceSlice that acts as if it was tracing

a slice whose count and capacity are both the array size (in Go, this is

available as part of the type of both arrays and pointers to arrays), the only

differences being that (1) the capacity and count come from somewhere else,

and (2) relocation must be reflected by an assignment to something other

than Data(shp). The second case is pointers to values that happen to point

to or inside an array element. We can handle these as if we were looking at an

one-element slice, though recording the relocation must be done differently

yet again.

Since array elements can be of any type, the criterion that tells Algo-

rithm 3 that it should call not Trace but TraceSlice (or its equivalents

for arrays and array pointers) should not be the type of the item being traced,
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but a property of the zone that contains it. The obvious property to test is

“does this zone contain array data.” However, the approach we described in

this section add both space and time overheads. If arrays in a zone typically

die all at once, then we would not want to incur these overheads, because

they would not pay for themselves through the earlier recovery of the mem-

ories of array elements. If either the programmer or a profiling system can

predict which zones fall into which category, they can control whether the

algorithms of this section are applied to each zone by including a bit in the

headers of zones containing arrays that tells the algorithms operating on the

zone’s flexipages, including Algorithm 3, which item representation the zone

uses, and therefore whether they should call TraceSlice, or just a version

of Trace adapted to the simpler data structures described in Section 5.4.1.

5.5 Handling Other Go Constructs

Go provides several features we have not yet discussed. While we have not

modified our collector to handle them thus far, we do provide discussion as

to how they can be dealt with in future implementations.

Interface types in Go might be expected to present something of a prob-

lem, since values declared in a function as having an interface type actually

have some other type which is not known when the function is compiled.

However, our scheme handles interface types without adaptation. User code

that deals with the item without knowing its actual type, knowing only what

interface it implements, never needs to know what zone the item is stored

in. However, when an instance of an interface type is created, its actual type

must be known, so it will naturally be placed in the correct zone. When trac-

ing an interface type item, our functions will find the flexipage and the zone

it occurs in, and will determine its actual type from that before preserving

and tracing it.

An interface type in effect stands for all the types that implement all the
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methods of that interface. In some cases, this may lead to regions with many

zones, one for each actual type that is passed to a function or a set of functions

expecting an interface type, with many of these zone containing very few or

no items at all. In such cases, much space will be wasted on flexipages with

few inhabitants. An alternative approach would have the region inference

algorithm put items that are used as values of interface types into a special

zone in each relevant region, a zone in which each item contains a tag. This

would trade slower GC and higher per-item memory overhead for a lower per-

actual-type overhead. Determining which of these two approaches is better,

and under what circumstances, is a matter for future work.

Go’s co-routines (goroutines) present more of a problem. The static anal-

yses used to control the RBMM system assume that a called function runs

to completion before the next function is called. The go construct violates

that assumption: the function call following the go keyword will typically not

complete before the start of the execution of the following construct. This

means in some cases, it is necessary to decide dynamically when to reclaim

a region. Go also supports channels for communication between goroutines.

These must be augmented to pass regions along with the items they contain,

so that the receiving goroutine can know which regions to allocate from and

which to reclaim. Finally, during GC, any thread that may use or modify

any items in any regions being collected must be paused for the duration of

the GC. Note, however, that threads that cannot access any regions being

collected may be allowed to continue during GC.

There are aspects of the Go implementation, such as strings and maps,

that use specialized data representations. The algorithms that we have pre-

sented in this paper need minor adaptations to handle these representations.
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5.6 Evaluation

In order for us to measure how our RBMM system performs with our region-

aware garbage collector, we executed a series of tests to measure time and

memory usage on a series of benchmarks. Most of the benchmarks are deriva-

tives of those mentioned in Chapter 4 with a few parameters adjusted in order

to increase runtime. Due to complications of our implementation, we were

only able to run a subset of the tests from the Debian Language Shootout

benchmark suite provided in the gcc test suite for Go. Further limiting our

test set is the fact that our newer modification does not support multiple

module Go programs. Therefore, only single module tests were considered.

It just happens to be that all of the Shootout tests are single module, but

also very small in terms of lines of code. Once again, we chose programs

that did not require the use of Go routines. We only show results for those

programs which we can verify output from.

The additional benchmark programs we added were also from the Debian

Language Shootout and range from approximately 58 to 85 lines of code.

These programs are fannkuch(integer manipulation program), mandelbrot(fractal

generator), and pidigits (pi calculator).

These tests were conducted on the same machine as our original series

of evaluations (see Chapter 4). However, given the vast amount of time

between the latter chapter and the current one, some software updates have

been implemented on the test machine. For instance, the OS running the

tests has now been upgraded to Ubuntu 12.10. Similarly, the GCC used

to compile both our modifications (our plug-in and runtime) and the tests

themselves is version 4.7.2 (which supports the Go version 1.0 specification).

The GCC Go libraries used during runtime were that provided by the same

GCC 4.7.2 and are from Go version 1.01. Some of our modified runtime is

based on code from GCC’s libgo version 4.7.1 and 4.7.0.
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5.6.1 Methodology

Our results reported here involved running each test program with and with-

out output. We verified that our modifications do not alter the output from

the same unmodified program. The performance results for each test were

gathered by executing each benchmark with its output disabled. This al-

lows us to more precisely measure execution time without the additional OS

overhead of printing values to the screen.

Both the high water mark (HWM), which represents the max resident set

size of the process, and the elapsed time are reported as an average over ten

runs for each benchmark.

5.6.2 Results

Table 5.1 contains our benchmarking results. Of interest are both the time

and space usage of the benchmarks. The unmodified tests are labeled as

(plain). The tests using RBMM with Go’s garbage collector are labeled

as (rbmm), and the tests utilizing RBMM and our region-aware garbage

collector are labeled as (rbmm+gc).

An interesting measure to consider when reading these values is the ad-

ditional size required to support the garbage collector. Such “bookkeeping”

data includes the typeinfo, global variable, stack, and register information

tables that our collector uses to process allocation types and to traverse the

call stack. Both of our RBMM systems create regions dynamically at run-

time. For the rbmm+gc tests, our system allocates additional memory upon

each region creation to contain its zone header information. Recall that our

zones are only useful for garbage collection, therefore in the test rbmm tests,

each region contains just a single type agnostic zone.

Table 5.2 illustrates just the binary sizes alone for all three versions of

each program described above without the statistics gathering code compiled

in. These numbers reflect the additional memory a test requires when the
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Inuse Pages Free Pages

Test HWM(KB) Elapsed (seconds) N Bytes N Bytes

binary-tree (plain) 91504.80 11.71 NA NA NA NA

binary-tree (rbmm) 1443682.00 3.45 9309 38129664 6205 25415680

binary-tree (rbmm+gc) 1459476.40 8.30 9420 38584320 6965 28528640

fannkuch (plain) 8567.60 7.46 NA NA NA NA

fannkuch (rbmm) 8592.00 7.59 4 16384 1 4096

fannkuch (rbmm+gc) 8631.20 7.37 6 24576 1 4096

mandelbrot (plain) 8636.00 4.49 NA NA NA NA

mandelbrot (rbmm) 8670.40 4.49 0 0 0 0

mandelbrot (rbmm+gc) 8695.20 4.49 0 0 0 0

matmul (plain) 86977.20 13.92 NA NA NA NA

matmul (rbmm) 80622.80 11.82 6005 73830400 4503 55369728

matmul (rbmm+gc) 117000.00 13.19 9011 110813184 7 172032

meteor-contest (plain) 8807.60 0.18 NA NA NA NA

meteor-contest (rbmm) 12750.80 0.12 3 12288 1 4096

meteor-contest (rbmm+gc) 12820.00 0.12 5 20480 1 4096

pidigits (plain) 9760.40 43.01 NA NA NA NA

pidigits (rbmm) 9812.00 42.94 0 0 0 0

pidigits (rbmm+gc) 9830.80 43.05 0 0 0 0

Table 5.1: Early implementation performance results

test is initially loaded into main memory. This size will set a minimum bound

on the HWM values depicted in the former table. RBMM alone contributes

an average of 97.16 KB to the executable size. Adding in our region-aware

GC contributes, on average, an additional 68.16 KB over that of just RBMM

alone. Note that these values for rbmm+gc also reflect additional debugging

information for aiding GC debugging. While these data are not used during

runtime, they were not removed due to complications and time constraints.

Also note that we have yet to begin optimizing our garbage collector.

It is important to note that our system never returns memory to the

OS, instead the system recycles it for later allocations. When looking at

the HWM values, the In Use Pages and Free Pages metrics should also be

taken into consideration. These values show the data that only our run-
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Test Executable Size (KB)

binary-tree (plain) 66

binary-tree (rbmm) 146

binary-tree (rbmm+gc) 211

fannkuch (plain) 65

fannkuch (rbmm) 145

fannkuch (rbmm+gc) 204

mandelbrot (plain) 65

mandelbrot (rbmm) 143

mandelbrot (rbmm+gc) 207

matmul (plain) 66

matmul (rbmm) 145

matmul (rbmm+gc) 214

meteor-contest (plain) 78

meteor-contest (rbmm) 157

meteor-contest (rbmm+gc) 247

pidigits (plain) 65

pidigits (rbmm) 144

pidigits (rbmm+gc) 206

Table 5.2: Binary Sizes of the Benchmarks

times (rbmm or rbmm+gc) know of. The runtime memory footprint results,

as seen in the HWM values, show that our collector does not generate much

additional memory for test cases that utilize small amounts of dynamic mem-

ory (fannkuch, mandelbrot, and pidigits). The latter is less than 80 KB

of additional space as compared to the plain version For mandelbrot and

pidigits no dynamic memory is requested in the source file that we ana-

lyze and transform, therefore these provide an interesting case to evaluate

how performance is affected by a relatively idle rbmm and rbmm+gc system.

Potentially the libraries that mandelbrot and pidigits make calls to might

request dynamic memory; however, those libraries were never compiled with

a region-aware compiler and are unaware of RBMM. Therefore, all (potential)

memory requests in those libraries are all handled by Go’s existing collector.
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Test Go’s GC Our GC (RBMM+GC)

binary-tree (plain) 202 NA

binary-tree (rbmm) 1 NA

binary-tree (rbmm+gc) 0 18

fannkuch (plain) 1 NA

fannkuch (rbmm) 1 NA

fannkuch (rbmm+gc) 0 2

mandelbrot (plain) 1 NA

mandelbrot (rbmm) 1 NA

mandelbrot (rbmm+gc) 1 1

matmul (plain) 11 NA

matmul (rbmm) 1 NA

matmul (rbmm+gc) 0 14

meteor-contest (plain) 7 NA

meteor-contest (rbmm) 1 NA

meteor-contest (rbmm+gc) 0 9

pidigits (plain) 4487 NA

pidigits (rbmm) 4479 NA

pidigits (rbmm+gc) 4459 0

Table 5.3: Number of Garbage Collections

(This is the reason why we cannot fully disable the need for Go’s exist-

ing garbage collector.) In other cases (binary-tree and meteor-contest),

where dynamic memory is more stressed, both the rbmm and rbmm+gc ver-

sions allocated more memory than the unmodified test. The exception is

matmul which our rbmm version performs better in comparison to the un-

modified version. However, this case also shows us that our garbage collector

needs work, as it allocates an additional magnitude of order of memory over

that of the rbmm and plain versions. We note that matmul creates many slices

and our collector only preserves entire (and not portions of) slices. Further,

our garbage collector’s slice handling has been riddled with bugs and much

time has been spent trying to smooth things out, with little to no avail. In

fact, given certain input this test will premature exit in failure. The results
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of this test compiled here are all from runs which did not terminate early.

We also find that matmul has significantly fewer free pages during execution,

which suggests that our collector might be inefficiently handling pages. As

expected, our collector does require more pages than our rbmm system along.

Recall that a region will need to allocate more pages during copy-collection

for copying objects from from-space into to-space. In contrast, binary-tree,

which also has a significant negative memory performance (and allocates no

slices) shows that our use of pages is efficient in comparison between our

modified versions. Both of our modified tests utilize nearly 16 times more

memory than the unmodified version, and this finding suggests that our re-

gions must be contributing a fair amount of bloat and that potentially our

GC is of little use. These results suggest that we should investigate more at

how our slices are managed as well as how effective are collector is performing

when collecting regions. We did notice that disabling our slice collection in

the matmul (rbmm+gc) case did bring down the footprint to a size more rep-

resentative of the rbmm version. However, given our poor performance for

binary-tree which uses no slices, our memory problems might also be plagued

with a problem not solely related to our garbage collector.

Both of our modified systems perform well for execution time on a major-

ity of the tests we examined. Time is dependent on both application runtime

and GC performance. Both GC systems, our GC and Go’s existing GC,

are stop-the world, and halt execution of the mutator to perform their GC

function. In addition, our RBMM systems additionally affect runtime per-

formance due to our static analysis inserting region operations during compi-

lation (in the rbmm and rbmm+gc test cases). Of course these functions are

only useful for RBMM and not GC, therefore they provide additional cycles

that our RBMM systems must use. The results show that our region-aware

GC (rbmm+gc) did appear to slow down runtime from that of the rbmm

tests. Since these differences are often quite minor and the times so small,

we cannot exclude the possibility of OS noise and overhead from other con-
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currently running processes on the test machine. As with the results seen

in Chapter 4, our binary-tree performance did quite well over that of the

unmodified version. One such cause might be that we collect less frequently

than Go’s collector. However, it is beneficial to know that the collector does

not seem to pose significant time overhead for the low-memory tests.

Table 5.3 shows the number of garbage collections that each test per-

formed. Note that we only ran this data collection once to obtain the GC

values. One would expect the same collection counts on benchmarks which

do not make any time-based or pseudo-random decisions. In fact, having

benchmarks with repeatable output is desireable, as it allows for multiple

identical independent runs of the same executable. However, we noticed

that Go’s garbage collector had an interesting property, non-determinism.

We can run a test with deterministic output (no apparant rand() calls or

time-based decisions) numerous times and get different collection counts re-

ported by the Go collector. We cannot guarantee what happens in external

library calls, but we did not see any of the benchmarks making calls to the

random or time Go packages. It turns out that the Go runtime provided by

our test gcc versions 4.7.2 and 4.6.3 enable memory profiling by default. We

assume versions between the two aforementioned gcc versions also have the

same property of permiting memory profiling by default. The Go memory

profiler samples memory based on a random value. This sampling has an

effect that can increase or decrease the number of time their collector exe-

cutes. The number of collection counts are important as they allow us to

decide whether or not our speedup is due to our GC frequency or RBMM

efficiency, or possibly some combination of both. However, we report just the

value from one run from the default Go execution, as we think that such a

number will allow us to determine where our speed up is coming from. The

values for our region-aware collector are only available on the tests that have

our collector enabled rbmm+gc, all other cases have results labeled as NA.

For the binary-tree case, which we perform incredibly well on with re-
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spect to time, we see that our collector does execute 18 times, versus the 202

that Go’s collector alone performs. We note that a majority of the speedup

in the latter is due to less GC. We should also consider tweaking our GC

parameters which can increase collection frequency and potentially reduce

the HWM for this test as seen in Table 5.1. On the opposite end of the

performance table is pidigits. This test case triggers no GCs from our col-

lector which suggests that this test makes a majority of its memory requests

in non-region-aware libraries. For matmul it seems that nearly all allocations

are handled in the source file which means our collector and RBMM system

are fully utilized. While both of our systems perform well with respect to

time, our rbmm alone system does slightly better for space. In this case

Go’s collector was only utilized once which means that our RBMM system

without GC, in cases where it can be fully utilized, can perform well. In the

case where we rely on our region-aware GC, we notice that we introduce an

incredible amount of space. At this time we are not sure where this addi-

tional overhead is originating from. However, even though we do perform 18

GCs we did not compromise much time with respect to the rbmm alone case,

and we perform better over that of the base plain case.

5.7 Summary

In this chapter we have described an augmentation to the design of our pre-

vious automatic memory management system combining the fast allocation

and deallocation of memory under RBMM with the relatively low peak mem-

ory usage of a garbage collector. However, our results show that more work

is needed to accomplish the goal of reducing the peak memory. As with

our initial incarnation, our system still requires no programmer annotations,

which we view as a benefit. To improve locality of reference, we use a copying

collector, so we need to know the type of each item. Instead of attaching

type tags to individual memory items, as done by Hallenberg, Elsman and
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Tofte [26], we attach them to pages, similar to the Big Bag of Pages ap-

proach to GC. The system can decide which region or regions to garbage

collect based on runtime memory usage. While not fully implemented, our

system can be modified to use compile-time region points-to information, to

avoid tracing regions that cannot point to regions being collected. This can

reduce GC times.

We have also presented a design for garbage collecting unused elements in

arrays. These can arise when slices and slices of slices are taken, old arrays

and slices go out of use, and new ones continue to be used. Our method

reclaims unneeded elements over two successive GCs, with each GC retaining

the elements that were live at the time of the previous GC, and determining

the elements needed during the current GC. This capability costs two bits

per slice element and increases runtime overhead slightly, but can potentially

reclaim a substantial amount of additional memory. Once implemented, this

feature can be switched off selectively in zones where it proves ineffective.
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Algorithm 3 Preserve an item and everything it keeps alive

Require: addrptr: Pointer to the address of an item
Require: toplevel: Is the call coming from Algorithm 2?
function PreserveAndTrace(addrptr, toplevel)

addr← ∗addrptr
if addr is in the heap then

〈fpp, base, zhp〉 ← LookupHeap(addr)
type← TypeIn(zhp)
offset ← addr− base
rhp← ContainingRegion(zhp)
if ¬RegionBeingCollected(rhp) then

newbase← base ⊲ Item is not moved
needstrace← RegionNeedsTracing(rhp)

else

if ¬RedirectBit(fpp, base) then
newbase← Preserve(base, type, fpp, zhp)
∗addrptr← newbase+ offset
needstrace← RegionNeedsTracing(rhp)

else

newbase← ∗base ⊲ Get redirect pointer
∗addrptr← newbase+ offset
needstrace← False ⊲ Has been traced already

else if addr is not null then
⊲ if addr is not in the heap, it must refer to a root

if toplevel then
newbase← addr ⊲ Top level refs point to the start
type← TypeOf(addr)
needstrace← True

else

needstrace← False ⊲ A top level call will trace it

if needstrace then

Trace(newbase, type)



Algorithm 4 Trace an item and preserve all items it keeps alive

Require: base: Pointer to the start of the item
Require: type: The type of the item located at base
function Trace(base, type)

for all aioff ∈ AddrsInside(type) do
aiaddr← base+ aioff
PreserveAndTrace(aiaddr, False)



Algorithm 5 Trace a slice header, and preserve and trace its slice

Require: shp: Address of the slice header
function TraceSlice(shp)

if Capacity(shp) = 0 then

return

slicestart← Data(shp)
if slicestart is in the heap then

〈base, zhp〉 ← LookupHeapArray(slicestart)
type← ElementType(TypeIn(zhp))
es← SizeOf(type) ⊲ Element size
cap← Capacity(shp)
fse← (slicestart−&Elements(base, 0))/es
lse← fse+ cap− 1
fce← fse
while 0 ≤ fce− 1 ∧ SeenPrev(base, fce− 1)) do

fce← fce− 1

lce← lse
while lce+ 1 < cap ∧ SeenPrev(base, lce+ 1)) do

lce← lce+ 1

copybase←
PreserveElements(slicestart, fce, lce, fse, lse, es)

Data(shp)← &Elements(copybase, fse− fce)
count← Count(shp)
for i← 0 to count− 1 do

if SeenCurr(base, fse+ i) = 0 then

SeenCurr(base, fse+ i)← 1
SeenPrev(copybase, fse− fce+ i)← 1
eltbase← &Elements(copybase, fse− fce+ i)
for all aioff ∈ AddrsInside(type) do

aiaddr← eltbase+ aioff
PreserveAndTrace(aiaddr, False)

for i← count to cap− 1 do

SeenCurr(base, fse+ i)← 1
SeenPrev(copybase, fse− fce+ i)← 1



Algorithm 6 Preserve slice elements

Require: slicestart: Starting address of slice data
Require: fce: Index of the first contiguous element
Require: lce: Index of the last contiguous element
Require: fce: Index of the first slice element
Require: lce: Index of the last slice element
Require: es: The size of each element
function PreserveElements(slicestart, fce, lce, fse, lse, es)
〈base, zhp〉 ← LookupHeapArray(slicestart)
if ∀i ∈ fce..lce . ¬SeenCurr(base, i) then

numelts← lce− fce+ 1

copybytes←
⌈

headerbytes+⌈(2∗numelts)/8⌉
alignment

⌉

∗ alignment

+ numelts ∗ es
copybase← AllocFrom(ToSpace(zhp), copybytes)
ArrayNumBytes(copybase)← copybytes
ArrayNumElts(copybase)← numelts
for i ∈ 0..numelts− 1 do

SeenPrev(copybase, i)← fse ≤ fce+ i < lse
SeenCurr(copybase, i)← 0

CopyMemory(&Elements(copybase, 0),
slicestart, numelts ∗ es)

∗(&Elements(base, 0) + fce ∗ sz)← copybase
else

copybase← ∗(&Elements(base, 0) + fce ∗ sz)

return copybase
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Chapter 6

Supporting RBMM in a

Concurrent Environment

Scientific inquiry shouldn’t stop just because a

reasonable explanation has apparently been

found.

Neil deGrasse Tyson

Multicore processing has become a common way of improving computa-

tional performance, in lieu of single core systems meeting physical limitations.

Parallelizing computations across multiple CPUs is a relatively simple way

to achieve computational performance which has become the norm for even

consumer grade hardware. It is not difficult to understand that if you give

a powerful CPU to a research student they can find a way to maximize its

performance relatively quickly. The same goes for the consumer world. In

1965, Gordon Moore established the notion that every two years the num-

ber of transistors on a integrated circuit doubles. This observation became

known as “Moore’s Law,” and can more generally be reduced to the idea that

computer systems will roughly double their CPU power every two years.

As physical limitations to CPU architectures are being approached, chip

manufacturers are looking at other ways to continue providing consumers

with more compute power. One such solution is to merely provide more CPU

execution cores for processing (multicore systems). However, this leads to an

interesting problem. The problem being: If a program is to achieve the best
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performance, then programmers must write programs that take advantage of

the increase in CPU parallelism.

Given the current status of computer hardware, it is tricky now to pur-

chase a desktop or laptop that does not have multi-core support. Therefore,

it is of interest for the programmer to take advantage of such an environment

to attain the best performance out of the hardware presented.

Up to this point in this thesis, our work has covered introducing RBMM

into a non-concurrent sequential subset of the Go programming language.

In this chapter we introduce a design that allows RBMM to work within a

coroutine environment as provided by the Go programming language. To our

knowledge this is a unique contribution that introduces RBMM into a lan-

gauge whose concurrency is designed around the Communicating Sequential

Processes formal language [36].

6.1 Introduction

Often the terms parallel and concurrent are confused. To clarify, a concur-

rent system is one that can execute multiple threads all at once. Process

executions are interleaved (possibly on just a single CPU) and scheduled via

the OS. In fact, a program can make use of threads and permit their applica-

tion to operate as many smaller processes. This can enhance efficiency and

allow a program to perform multiple tasks all seemingly at the same time. If

a programmer wants to squeeze the most performance out of their applica-

tion, they should consider ways to thread their application in order to take

advantage of such concurrency. Similarly, parallel programming makes use

of multiple execution cores or system threads so that the threads of a single

program can execute simultaneously (in parallel). For the remainder of this

chapter we will interchangeably refer to threading a program and allowing

it to execute in a parallel context as concurrent or parallel programming.

The slight differences in meaning are not necessary to explain our RBMM
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modifications.

Both parallel and concurrent programming introduce additional complex-

ity for the programmer to manage. Programmers must be aware of the chal-

lenges (deadlock and race-conditions) and to avoid them as best as possible.

While hardware seems to be increasing in performance, easy solutions to

concurrent programming are still primitive. A programmer must prevent one

thread from reading or writing data that another thread might be manip-

ulating at the same exact time, if not then one of the threads (or possibly

both) will have an incorrect picture of the program’s state. This can lead to

deadlock and race conditions. We call such invalid data access (one thread

reading or writing to data that another thread might also be reading or

writing) a data contengency.

As mentioned, no simple solutions have become common to avoid such

situations. Mostly, the programmer must employ complicated concepts of

locking and mutex constructs to restrict access to a critical piece of data

(critical section) permitting only one thread to read/write it at a given time.

This is hard! Not only must a programmer solve a problem but they might

also have to manage resources (e.g . memory management), all while trying

to accomplish these tasks utilizing concurrent contexts.

6.2 Go’s Solution

The Go programming language aims to reduce concurrent programming com-

plexity by having a semantics of sharing memory by communication [21]. To

do this, Go relies on co-routines and channels as introduced by Tony Hoare’s

1978 paper, Communicating Sequential Processes [36]. Such a system elim-

inates the need for a programmer to explicitly lock data shared amongst

threads. Instead, a program can be written using channels and co-routines

(go-routines) that permits atomic access to data.
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6.3 Design

While Go programmers might have an easy means of applying concurrent

models to their software, our implementing of parallel-safe RBMM must still

rely on more traditional forms of handling concurrent data access. In fact,

our RBMM-aware Go runtime is all written in C, therefore we can rely on

complicated yet working constructs to prevent such data access contingencies.

In this section we present a design for managing regions that can be used

in concurrent Go programs. Any function in Go can be made parallel by

simply prefixing the call with the keyword “go”. The new function invoca-

tion will then execute in a new independently-scheduled thread, which will

terminate when the call returns.1 Since the new thread can execute in paral-

lel with its parent, operations on any regions passed from the parent thread

to the new thread will need synchronization. To support go-routines we

mark regions passed in such calls, and the transformation pass, when it sees

the marks, should generate calls to modified versions of the region creation,

allocation, and removal operations.

To better understand our design we provide the following additions, in

Figure 6.1, to our semantics originally described in Section 4.4.3. Both send

and recv require channel variables. Since channels are allocated with new,

they have regions. Go’s “go” statements take a single function as input.

Our semantics maps the regions of the actual parameters of the caller to

the formal parameters of the callee. This mapping generates a set of regions

for all of the input arguments. Notice that we ignore return values. Any

function can be made parallel via the “go” keyword, even those that return

values. Go will not permit “go” statements to return actual values, thus

1The Go language and runtime is designed to handle thread creation cheaply. Instead
of spawning off multiple system-threads, which can be resource expensive, the language
permits go-routines to execute (interleaved) on a single system thread. Early versions
of the Go runtime provided by gcc did not support this multiplexing of go-routines, and
instead placed each one onto its own system thread. For the purposes of this section, such
details are not necessary.
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S[[v1 = recv from v2]]ρ = (R(v1) = R(v2))

S[[send v1on v2]]ρ = (R(v1) = R(v2))

S[[go f(v1 . . . vn)]]ρ = θ(πf1...fn(ρ(f)))

where θ = {f1 7→ v1, . . . , fn 7→ vn}

Figure 6.1: Added semantics for handling Go’s concurrency primitives.

syntactically enforcing the programmer to make use of channels. Later in

this chapter we explain our requirement for having messages being sent and

received to share the same region as the channel.

6.3.1 Gory Details of How a Go-routine Executes

To understand the following sections, it is necessary to understand what

happens at both compile and runtimes when a go-routine is created. The

compiler will first replace the go-routine call with a special helper-function

that is respobnsible for creating a new thread and then calling the function

that is to be made concurrent. This helper function takes a function pointer

and a set of arguments. The function pointer is that of the function that is

to be made concurrent, and the set of arguments are the original arguments

passed to the function. At runtime, the helper function is called, a new thread

is created, and a wrapper function is called. The wrapper executes on the

go-routine and only passes the proper arguments to the function, executes

the function, and the warpper exits. Once the wrapper has executed, the

go-routine can be thought of as being terminated.
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6.3.2 Concurrency for Region Operations

As with our semantics, we must also take a few considerations as to the mean-

ings of our region operations which we originally described in Section 4.4.2.

Such considerations are to prevent any data contengencies when accessing

the data that these operations manipulate (region metadata). Such accessess

must be atomic, if not then the potential of a data contengenciy can arise.

Concurrency for IncrProtection() and DecrProtection()

Our concurrent RBMM system must take caution during region removal. We

must prevent a thread from prematurely removing a region that might be

shared amongst other regions. Such a case can occur if one go-routine has

completed its use of a region, and then decrementing the protection counter

and removing that region. Potentially another go-routine might still be using

that region, and if it suddenly becomes invalid, then the resulting program

is incorrect (and might terminate prematurely). To prevent such cases our

protection counter takes on a slightly different meaning in the context of

go-routines. Consider the following example:

func main ( ) {

reg := CreateRegion ( )

va l := AllocFromRegion ( reg , s i z e o f ( int ) )

∗ va l = 42

// More code . . .

go processSomeData ( va l )

// More code . . .

}

In the preceeding example, following our previous semantics of our pro-

tection counters, we would have incremented the counter just prior to calling
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processSomeData and decremented it just after that call. Go-routine calls

spawn off a new lightweight thread of execution and the current thread will

procede to the next statement despite how long the go-routine’d function

takes to execute. If we were following our old semantics we would have

incremented the counter, called processSomeData, and immediatley decre-

mented the counter. Possibly we might have removed the region associated

to val, despite the knowledge that the concurrently executing go-routine

with processSomeData might still need it. This could result in premature

program termination.

To prevent such a case, we increment the protection counter just prior to

making the go-routine call, as we would have done in our previous semantics.

The adjustment we add here is that we decrement the counter once the go-

routine completes. To understand our reasoning behind this adjustment it

is necessary to understand how a go-routine operates at the low-level, as

presented in Section6.3.1. We inset the decrement and region removal in the

wrapper that is responsible for executing the call at runtime.

Concurrency for CreateRegion()

For region creation operations, our parallel modification allocates space for,

and initializes, one additional fields in the region header: a lock variable that

our runtime uses to prevent other threads from removing or concurrently

allocating from the region when an allocation is taking place.

Concurrency for AllocFromRegion()

For allocation operations, our modification turns the usual code of the oper-

ation into a critical section that is protected by the lock field in the region

header. This extra synchronization can be optimized away on allocation

operations in the main thread before the first go-routine call involving the

region is executed.
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Concurrency for RemoveRegion()

For region remove operations, our modification operates, under mutual ex-

clusion, on the field in the region header that records the number of threads

that contain references to the region. When no other threads need to access

the region’s contents, the protection counter will have a value of zero, signi-

fying that the next region removal operation can safely reclaim the region’s

memory. When the region is mentioned as an argument in a go-routine call,

we increment its protection counter. This signifies that another thread has

access to the region and that the region should not be removed until no other

threads have access to it.

Just before a thread executes an operation to remove the region, at the

point where it has no further references to the region, we decrement its

protection counter. If the region’s counter is still positive, some other threads

must still be using the region, or a variable in the region is still needed later in

the functions execution, so the removal operation will not be able to reclaim

the region’s memory. This runtime test is necessary because, while a static

analysis can figure out which program point in the body of each thread that

makes the last reference to a region in that thread, the question of which

of these per-thread last references is actually executed last at runtime may

depend not just on the input to the program but also on the effects of thread

scheduling, and thus in general it cannot be decided statically.

The overall transformation is shown below in Figure 6.2. Note that the

function f has been replaced in the transformed version with a wrapper

function, f’ as we discussed in 6.3.1. Our wrapper also ignores the return

value of f if it were to have one. Since a call to a go-routine completes

immediately, and the execution of the go-routine might be delayed do to

CPU scheduling reasons, there is no return value that the caller can use.

Instead, channels should be used to communicate data between go-routines

(a singly-threaded application is a single go-routine). Like main, when f’

exits, its thread will not have any remaining references to the regions it
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go f(v1, . . . vn)〈r1, . . . rp〉;  

IncrProtection(r1); . . .

IncrProtection(rp);

go f ′(v1, . . . vn)〈r1, . . . rp〉;

where func f ′(f ′
1, . . . f

′
n)〈r1, . . . rp〉 {

f(f ′
1, . . . f

′
n)〈r1, . . . rp〉;

DecrProtection(r1); . . .DecrProtection(rp);

RemoveRegion(r1); . . .RemoveRegion(rp);

}

Figure 6.2: Go-routine transformation

handles, but unlike main, it gets some regions from its parent thread, and

does not have to create them all by itself.

Note that the IncrProtection() operations must be performed in the parent

thread; if they were in the child thread in f’, the parent thread could delete

a region before the child thread gets a chance to perform the increment that

would prevent that.

We can optimize the above code in some cases. For example, we can

guarantee that some per-thread last references cannot be the last reference

globally. If two threads communicate using an unbuffered channel, meaning

that the writing thread will block until the reading thread is ready to read,

and if the last reference to a region in the reading thread is before the read

while the last reference to that region in the writing thread is after the write,

then we know that the last reference to the region in the reading thread

cannot be the overall last reference to the region. In that case, we can

optimize away the call to RemoveRegion after the call to DecrProtection() in

the reading thread.

Another optimization applies when a go-routine call site is the last ref-

erence to a region in the parent thread. In that case, the increment of the

thread reference count at the call site and its decrement in the remove region
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operation in the parent immediately afterward would cancel each other out,

and thus both can be optimized away.

When a thread t1 sends a message to another thread t2, with a statement

such as send v1on v2, the code executed by t1 effectively decides what region

supplies the memory for the message: it will be R(v1). When t2 receives the

message, it will do so with a statement such as v3 = recv from v4. After

this statement, t2 will believe the message to be in region R(v3). We need

this to be the same as R(v1), since otherwise the two threads will disagree

on when the region of the message can be reclaimed. We ensure this by

imposing this chain of equalities: R(v1) = R(v2) = R(v4) = R(v3). The first

equality is from the analysis rule for send statements; the third is from the

rule for recv statements; and the second follows from the fact that for the

message to be transmitted, v4 must refer to the same channel, and thus the

same region, as v2.

There are two ways that two threads can communicate. One way is for

both to be given a reference to the same channel by a common ancestor

(which may be one of the threads themselves). In this case, a variable rep-

resenting the channel will be an argument in a go-routine call, and therefore

after our transformations, the region of that channel will be passed along

with it. The other way is for one or both of the threads to receive the id

of the channel in a message. Our current setup stores all parts of a data

structure in the same region, and this certainly applies to data structures

sent as messages. This implies that (a) a channel in a message is stored in

the same region as the message, while the rule for send operations says that

(b) a message is stored in the same region as the channel it is sent through.

Together (a) and (b) imply that if a channel c2 that is sent in a message on

channel c1, then R(c1) = R(c2). This means that even if t1 and t2 commu-

nicate on channels sent in messages, those channels use only regions whose

identities are passed between threads at go-routine calls.

Our system of equating the regions of messages and channels allows the
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region of a message to be reclaimed while the message is in a channel only if

the channel itself is being reclaimed. This can happen if, after a message is

sent on a channel, all references to the channel become dead. If that happens,

no thread can ever receive the message, so recovering its memory is safe.

6.3.3 Producer and Consumer Example

The following example illustrates the aforemention design presented in this

chapter. We choose to use a common concurrecny pattern, a produce and

consumer model. In this example a client proudces data at a pseudo-random

interval of [0, 3) seconds. A server listens, in a separate go-routine, and

consumes any data it receives. Both the clients and server communicate via

a shared channel. The main thread of execution creates the shared channel

and passes it to all of the client and server go-routines that it also instantiates.

Figure 6.3 is the unmodified version without RBMM transformations.

6.4 Evaluation

To test the effectiveness of our RBMM transformations for supporting Go’s

concurrency capabilities, we have modified our gcc-plugin to transform code

as discussed earlier. We look at both time and space metrics to gauge the

performance of our modifications.

6.4.1 Methodology

As with our previous experiments, we rely primarily on benchmarks from

Debian’s “Computer Language Benchmarks Game,” provided by the gccgo

compiler. The Go team has modified a subset of these tests to support

concurrency via go-routines, and it is these tests we specifically focus the

following evaluation on.
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1 package main

2 import ("time"; "math/rand")

3

4 type Data struct {client_id, seq_id int; data [128]byte;}

5

6 func client(client_id int, ch chan *Data) {

7 counter := 0

8 for {

9 counter++

10 d := new(Data)

11 d.client_id = client_id

12 d.seq_id = counter

13

14 ch <- d

15 println("Client", client_id, "sent sequence", counter)

16 time.Sleep(time.Duration(rand.Intn(3)) * time.Second)

17 }

18 }

19

20 func server(ch chan *Data, done chan int) {

21 sum := 0

22 for {

23 data := <-ch

24 sum += data.seq_id

25 if sum > 50 {

26 done <- sum

27 }

28 }

29 }

30

31 func main() {

32 ch := make(chan *Data)

33 done := make(chan int)

34

35 for i:=0; i<10; i++ {

36 go client(i, ch)

37 }

38

39 go server(ch, done)

40 <- done

41 }

Figure 6.3: Producer/consumer example



1 package main

2 import ("time"; "math/rand")

3

4 type Data struct {client_id, seq_id int; data [128]byte;}

5

6 func client(client_id int, ch chan *Data, reg *Region) {

7 counter := 0

8 for {

9 counter++

10 d := AllocFromRegion(reg, sizeof(Data))

11 d.client_id = client_id

12 d.seq_id = counter

13

14 ch <- d

15 println("Client", client_id, "sent sequence", counter)

16 time.Sleep(time.Duration(rand.Intn(3)) * time.Second)

17 }

18

19 DecrThreadCnt(reg)

20 RemoveRegion(reg)

21 }

22

23 func server(ch chan *Data, done chan int, reg1 *Region, reg2 *Region) {

24 sum := 0

25 for {

26 data := <-ch

27 sum += data.seq_id

28 if sum > 50 {

29 done <- sum

30 }

31 }

32

33 DecrThreadCnt(reg1)

34 DecrThreadCnt(reg2)

35 RemoveRegion(reg1)

36 RemoveRegion(reg2)

37 }

38

39 func main() {

40 reg1 := CreateRegion()

41 ch := AllocFromRegion(reg1, sizeof(chan *Data))

42

43 reg2 := CreateRegion()

44 done := AllocFromRegion(reg2, sizeof(chan int))

45

46 for i:=0; i<10; i++ {

47 IncrThreadCnt(reg1)

48 go client(i, ch, reg1)

49 }

50

51 IncrThreadCnt(reg1)

52 IncrThreadCnt(reg2)

53 go server(ch, done, reg1, reg2)

54 <- done

55 }

Figure 6.4: Producer/consumer example with region annotations



We added a few new tests which we have not looked at before: k-nucleotide,

regex-dna, and threadring. The first two take an input file representing

a DNA sequence and perform operations such as counting DNA sequences

or looking for a particular sequence match. threadring spawns numerous

go-routines which share data via communication between “adjacent” threads

in a circular/ring of threads. The shared data that is communicated and

manipulated is merely an integer that is decremented, thus an inexpensive

operation.

We validated the output from our modification (rbmm) and compared

that data to the output of the unmodified versions (plain) to ensure our

results match that of the unmodified (plain) test. During test execution, we

disabled the benchmark’s output. This helps eliminate some OS overhead

which has little to do with the test’s actual performance. Each benchmark

was run 10 times to obtain an average high water mark (HWM ) and Elapsed

Time value. We also disabled our garbage collector, as we are less confident

in its implementation. Instead, we relied on Go’s existing GC as we did in

Chapter 4.

The region count values are only available for the modified tests and

these numbers were gathered once and not sampled 10 times. threadring

intentionally terminates early by calling os.Exit(). Our statistical counters

are only displayed upon return from main. For the threadring test, we

had to run the application in the GNU debugger (GDB) and break on the

os.Exit call. We then could look at our statistical counter’s value representing

the number of regions created. Traditionally, in sequentially executing Go

programs, we would validate our system during development by looking at

our statistical counters. The number of regions created and removed should

have a delta of 1 by the end of execution. The 1 region difference represents

the global region, which we never remove. For tests using goroutines, we

cannot rely on this delta. For instance, a program can terminate before all

goroutines complete. Often, the parent goroutine and its child goroutine(s)
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are naturally synchronized via channels. The thunk that wraps the function

call declared in the go statement will try to remove regions after the child has

responded to its parent via channel communication. If the parents execution

is quick enough, the program might terminate before the child goroutine

and thunk complete. This can result in a delta greater than 1 between the

number of regions created and removed. Therefore, we cannot rely on this

statistic for an accurate measure of our system’s correctness. However, the

number of regions created does reflect that our system is doing something

and this value can help us gauge our performance and potential overhead

that an RBMM system might impose during program execution.

Our experiments were conducted on the same hardware as our previous

two evaluations (see 4. That system is now running Ubuntu 13.04. The GCC

used to compile both our modifications (our plug-in and runtime) and the

tests themselves is version 4.7.2 (which supports the Go version 1.0 specifi-

cation). The GCC Go libraries used during runtime were that provided by

the same GCC 4.7.2 and are from Go version 1.01. Some of our modified

runtime is based on code from GCC’s libgo version 4.7.1 and 4.7.0.

6.4.2 Results

Table 6.1 shows our performance results from the aforementioned experiment.

Our timing results show comparable performance with that of the unmod-

ified tests. Even though we do have a bit of region management overhead,

we still perform well in most of these cases, and only worse on one test,

spectral-norm-parallel. However, our tests were short-lived and might

reflect some OS performance overhead that is not directly related to our tests,

such as the scheduling of other processes. We cannot say conclusively that

we are better or worse than the unmodified version with respect to time. We

do appear to be comparable for programs with short execution times.

Our memory performance is comparable as well. In most cases we did not

benefit the memory footprint of the process, usually to the order of a 10-20KB

153



Test HWM(KB) Elapsed(seconds) Regions Executable Size(KB)

fannkuch-parallel (plain) 8,764.80 4.58 NA 84

fannkuch-parallel (rbmm) 8,780.00 4.06 6 167

k-nucleotide-parallel (plain) 39,738.40 1.29 NA 87

k-nucleotide-parallel (rbmm) 44,086.00 1.23 15 170

regex-dna-parallel (plain) 26,845.60 2.46 NA 76

regex-dna-parallel (rbmm) 26,642.80 2.44 11 156

spectral-norm-parallel (plain) 8,957.20 0.81 NA 73

spectral-norm-parallel (rbmm) 8,975.60 0.86 181 159

threadring (plain) 14,016.80 6.17 NA 65

threadring (rbmm) 16,069.60 6.16 506 146

Table 6.1: Go-routine performance with and without RBMM

increase, as witnessed by fannkuch-parallel and spectral-norm-parallel.

We also negatively impacted memory to the order of 4.3 MB for k-nucleotide

and 2.1 MB for threadring. An increase in memory is not unheard of for

an RBMM system, and is the result of the region-bloat problem where the

region keeps unused data around until to the program point where our static

analysis found a place to safely reclaim the region. We note that adding our

goroutine-capable RBMM system adds on average 86.6 KB to the binary file

size of the benchmark.

6.5 Summary

In this chapter we introduced a design to handle concurrency for RBMM in an

imperative language with CSP-styled parallelism. Our design is based around

a thread counter which represents the number of concurrent processes that

need a specific region alive. Removal of such a region cannot occur until the

counter has reached a value of zero, signifying that no threads need the data

allocated from that region anymore. As with the rest of our work, our focus

has been on the Go programming language, but with some modifications the
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design can be modified to fit any imperatively styled language, especially

those with a similar CSP-styled concurrency system.
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Chapter 7

Literature Review

From the front to the back as pages turn; reading

is a very fresh way to learn.

Run-D.M.C

A
utomatic memory management is an established research area of

computer science that has its start in 1959 with the implementation

of a garbage collector for the Lisp programming language [37]. It

is well understood that handling the management of memory is not a trivial

task for a programmer, especially when the task is orthogonal to the problem

that is to be solved. A language’s runtime system and compiler can maintain

a higher degree of safety if the (error-prone) human programmer is relieved

of the burden of memory management. This chapter looks at various imple-

mentations of automatic memory management and related concepts which

further enhance the understanding of this thesis: the combining of RBMM

and GC within an existing language.

7.1 Garbage Collection

Early in computing history it was realized that permitting the system to

manage memory automatically eases the job of the programmer. In 1959,

John McCarthy and his team at MIT’s Research Laboratory of Electronics

introduced the concept of a garbage collector into the Lisp programming

language. The original implementation was a mark-sweep collector, which

looks for unreachable objects when the system runs out of free memory. Their
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collector performs its task by scanning memory, starting at the base system

registers, looking for any objects which can no longer be accessed. These

registers form the root-set for their collector. All objects that can be reached

have their sign-bit set (the marking phase). The collector can then begin its

sweeping pass by scanning the entire memory space and returning any unused

(unmarked) memory back onto a freelist for later allocations to use. Since

GC is “entirely automatic” it is “more convenient for the programmer” to

let the system “keep track of and erase unwanted lists.” The authors found

that this system can be time-expensive, as “the reclamation process requires

several seconds to execute” [37].

With more and more languages adopting GC as a means of automatic

memory management, research into improving the performance of GC has

greatly increased. In order to improve collection speeds, it is necessary to

get a better understanding about the properties of allocated objects.

The weak generational hypothesis of GC is an observation that the most

frequently collected objects in memory also happen to be the objects that are

the most recently allocated [63]. One method to reduce the overhead of GC

is to scan a subset of the entire memory space for collection. Generational

garbage collectors exploit this observation. Ungar’s generational scanner, for

Berkley Smalltalk, shows a notable improvement over past GC techniques,

such as reference counting (33% improvement over deferred reference count-

ing). Reference counting is a technique used by some GC algorithms to

determine when an object is no longer reachable. Each time an object is

referred to during execution (e.g ., assignment) its counter is incremented,

and each time a reference is removed its counter is decremented. When the

count reaches zero, the object is no longer reachable and its memory can be

reclaimed. In contrast to reference counting, which introduces an overhead of

incrementing and decrementing a counter associated to each allocated object

when it is referenced, a generational collector groups objects based on their

survivability of collection. Memory associated to younger objects is scanned
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for garbage more frequently than that for older objects. When objects sur-

vive a number of collection cycles they are promoted to an older generation,

which is scanned less frequently. This copying compacts the memory space

and enhances data locality. Ungar observed that the copying of surviving

objects to a newer generation has lower overhead than scanning the dead-

/unreachable objects.

Lieberman and Carl introduced a real-time GC algorithm for partitioning

the memory space into regions based on object lifetimes [45]. Regions belong

to a specific generation and are scanned at a frequency based on the lifetime

of objects they contain. Generations that contain regions of younger objects

are scanned more frequently than generations containing regions of older

objects. Any reachable objects in a region that is being collected (scavenged)

are moved into a newer region. The memory for the scavenged region can

be reclaimed. Their algorithm makes use of the fact that in certain systems

(e.g ., Lisp) pointers more commonly point backwards in time. In other

words, objects are composed of pointers that were created earlier during

program execution. The authors note that shorter-lived objects account for

a higher proportion of memory space, therefore it is useful to scan them more

frequently for garbage than older objects.

GC performance can be improved by offloading some analysis to compile-

time. This static analysis can be used to reduce the cost of executing col-

lection cycles at runtime. Barth investigated the use of static analysis to

benefit GC [4]. Barth’s approach groups allocations of objects into classes.

Reference counting is then performed on the entire class and not per-object,

which reduces the overhead of per-object counting.

In 1988, Ruggieri and Murtagh introduced lifetime analysis [51]. This

static analysis technique can obtain an upper-bound on how long any partic-

ular object lives. With this knowledge, objects having lifetimes of decidable

bounds can be allocated at function entry and deallocated at function exit,

reducing the need (and overhead) for GC.
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Barry Hayes showed that the weak generational hypothesis holds; young

objects have short lifetime [30]. However, he found that waiting longer to

perform reclamation is not useful. His data suggests that age based lifetime

is not an adequate measure when considering older objects. Instead, as ob-

jects age into a particular generation (surviving multiple collections) another

measure of collection is more attractive. Scanning a potentially mature and

heavily populated older-generation is “unattractive” and can be a waste of

computation time. Hayes’ system makes use of his observation that clusters

of objects that are allocated at the same time often have a similar lifetime.

His system marks an object of a cluster as being a “key.” When that key ob-

ject is unreachable, then the cluster should be scanned. This method reduces

the amount of time spent collecting generations of older objects.

Hicks used a static lifetime analysis to verify the correctness of object

deallocation [33]. This information can be used to insert deallocation calls

into the program at compile-time, which he found could fulfill 80-100% of

object allocations. This result is a measure of certain classes of programs and

is not representative of all programs. This finding strengthens the motivation

for combining static analysis with a runtime garbage collector.

Aside from lifetime, object connectivity is another property of dynami-

cally allocated data that can be used to optimize GC. In 2002 Hirzel et al.

introduced a garbage collector that is based on an object points-to relation-

ship. This collector is based on information from their earlier finding: objects

that are connected tend to die together [35]. The latter is also a property

of object lifetime. The authors found that partitioning the memory space

based on object connectivity reduces the need for the garbage collector to

scan the entire program’s memory space. Their results demonstrate a ben-

efit, over generational collectors, with respect to mutator pause times and

memory space utilization [34].

Khedker et al. demonstrated that a static analysis can be used to benefit

time and space properties of GC [40]. The authors performed heap reference
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analysis to generate “access graphs.” These graphs are constructed from

“access paths” deduced statically at compile-time, and form an abstracted

view of the heap. Such information can be used to better understand the

lifetime and connectivity of objects within the heap. Unlike previous works,

the authors looked not just at allocation sites, but at every program point

which contains an object reference. By combining this information with

dataflow information, the authors built an abstract picture of the heap. This

information can be used to nullify objects that the compiler knows will not

be used, which may allow the garbage collector to collect the object earlier.

The authors found the latter to reduce heap size, and they postulate that

this led to the system spending less time garbage collecting. They also found

that less data had to be copied during collections.

Controlling the size of the heap can be used to reduce the amount of

time spent in GC. Arjom and Li showed the latter is true by using a thresh-

old algorithm. These thresholds act as a dynamically changing limit of the

heap size [2]. A GC occurs once this threshold is met. If the collection

reclaims a certain, pre-defined, amount of memory, then the threshold will

remain. Otherwise, the threshold will be adjusted until the amount of re-

claimed memory meets it. Their approach was designed to reduce paging by

increasing the GC frequency when the heap gets to a particular size, instead

of allowing the heap to continually grow. The authors showed that their

heap-threshold improved runtimes, over that of the Boehm-Demers-Weiser

conservative mark-sweep collector, on a series of Java programs.

Understanding the connectivity and liveness properties of heap data is

not the only means for creating more efficient garbage collectors. Other de-

sign choices can heavily influence the amount of time spent in recovering

unused resources. For instance, the interaction between the mutator and

garbage collector threads can be designed in such a way that system pause

times are reduced. It is possible to create a garbage collector that exploits

the parallelism of a system, permitting the collector to operate concurrently
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with the mutator threads. In addition, garbage collectors can be made par-

allel, whereby multiple collection threads execute simultaneously during a

collection cycle [39].

Halstead showed that Concurrent Multilisp, a concurrent implementation

of Lisp, can make use of a multiprocessor system to perform parallel copy-

ing GC. This implementation places heap memory spaces on each processor

(semispaces), from which objects can be allocated. This eliminates con-

tention between threads. The only point of synchronization occurs when the

copying phase has completed and the memory spaces are swapped [27]. The

collector is based on Baker’s copying collector [3], which divides the memory

space into semispaces (sometimes called fromspace and tospace) [16].

The Baker algorithm works by dividing the memory into two semispaces

and then coloring the objects in those spaces: white objects are those in the

fromspace, black objects are those that have been traced and copied, and

grey objects are those that have been copied to tospace but have not been

traced [3]. Baker mentions that, even though his copying collector compacts

freespace and helps to reduce memory fragmentation, it can require excessive

memory for some programs. The latter are natural properties of semispace

copying collectors; they require at least enough memory to support worse

case copying. This being the case when all allocated objects survive a GC

cycle and must be copied from fromspace to tospace.

In 1993, Doligez and Leroy implemented a parallel GC for Concurrent

Caml Light (a derivative of ML) [14]. In their system, each thread has its own

heap. The heap on one thread can be undergoing GC while the other mutator

threads are executing. Their system is a generational collector, whereby the

younger generation is collected via an asynchronous copying algorithm and

the older generation is collected via a concurrent mark-sweep algorithm. The

young generation exists per thread and the older generation is accessible

by all threads. As common in generational collectors, all newly allocated

objects are produced from the heap associated to the young generation. In
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this system, pointers are restricted to only point from the private (young

generation) heaps into the shared (older generation) heap.

7.2 Region-Based Memory Management

While automatic memory management relieves the programmer of the burden

of manually managing memory, it also can be a computationally expensive

process. As we have seen, understanding how the heap is organized can pro-

vide clues that can be used to more efficiently manage memory. Even under-

standing the use of manual memory managers can provide additional insight

to benefit automatic memory management. Berger, Zorn, and McKinley pro-

vided a thorough investigation of manual memory management, looking at

both traditional and custom general purpose memory allocators, with some

of the custom allocators being based on regions [5]. They also presented a

new system, called a reap allocator, which acts as a combination of both

general purpose and region allocators. Reaps begin life as a region. When a

request to free an item from the region occurs, then the reclaimed memory

from that item becomes memory for the region’s freelist. Once this freelist

is fully utilized by the region, then the region continues allocating from its

end. Their results show that on both memory consumption and execution

time, the custom region allocators beat the Doug Lea allocator on three of

five benchmarks, and the reap allocator on four of five benchmarks. These

results are encouraging, even though the general purpose and reap alloca-

tors can recover individual objects and the custom region-based allocators

cannot. On the other hand, automatic RBMM systems may not be able to

replicate the performance of these manually tuned region allocators.

Over a course of nearly nine years, a vast amount of RBMM research was

conducted by the efforts of Tofte, Talpin, Hallenberg, Birkedal, and Elsman

with their extensive exploration for improving the memory system of the

Standard ML programming language [60]. The initial motivation for creating
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a RBMM system was to reduce memory footprints and present predictable

runtimes for programs. This is in contrast to the garbage collector already

provided by the language. In 1992, Talpin and Jouvelot presented a language

semantics and static analysis for inferring sets of referenced data (regions)

in an extension of Core ML. They mention that such a system can be used

for managing memory [58]. Soon after this research was published, Tofte

and Talpin introduced RBMM for Standard ML [61]. Their seminal idea

was to allocate data, based on lifetimes, into stacks of regions. They found

that the maximum resident memory size often favored the RBMM approach,

while GC was often faster. The authors later proved the soundness of their

semantics [62]. In 1998, Tofte and Birkedal published their region inference

algorithm for ML and proved its soundness. The authors mentioned that, in

certain cases, if a region has pointers into it, the region can still be removed

if the system can prove statically that the pointers are never live at the point

of region reclamation. In contrast, a garbage collector that traces references

must conservatively assume that all reachable objects are live [59].

While RBMM might have been said to be birthed by the Tofte and Talpin

team, this was not the first use of regions. Rather, this was more of a birth

of the region-based memory management term. In 1990 David Hanson pub-

lished an article in Software Practices and Experience about his arena mem-

ory management system [29]. This system is for C and groups allocations

based on object lifetimes. An object’s lifetime specifies which arena its mem-

ory can be allocated from. When an arena is deallocated, all objects in that

arena are reclaimed all at once, therefore attaining the fast reclamation that

RBMM systems provide. Hanson found that his system was faster than a

quick-fit heap-based allocator and is less than double the speed of a stack

based allocator. Stack allocation is nearly zero sum, and can be thought of

as a best case (in speed) for memory management.

Aiken, Fähndrich and Levien observed that a stackless RBMM system

can use less memory than a stack-based RBMM system [1]. The authors
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liberated region lifetimes from having to coincide with lexical scope, that

is, from the stack discipline. Instead, their constraint-based static analysis

transforms the input program by inserting region creation operations as late

as possible and region reclamation operations as soon as possible. Henglein,

Makholm and Niss also explored implementing an RBMM system for ML

based on reference counting [32]. The latter choice permits faster region

reclamation than the stack of regions approach.

In 2000, Makholm introduced a Tofte-Talpin inspired RBMM system to

a subset of the Prolog programming language[46]. In this study, Makholm

found that RBMM is a reasonable alternative to GC on the benchmarks

he measured. On three of five benchmarks, he found that RBMM is faster

than, or equal to, the time overhead of a copying garbage collector. In two

cases he found that his RBMM system caused the benchmarks to run 5-10%

slower than GC. He suggests that this was the result of RBMM performing

performing operations that were never used.

Hallenberg, Elsman and Tofte extended a stack-based RBMM system

with a copying garbage collector using Cheney’s algorithm [26]. Unlike our

approach that we present later in this thesis, enabling their GC requires

adding a one-word tag to each memory item. Their testing showed that

adding tags increased memory usage by as much as 61%, and slowed their

RBMM-only system by up to 30%. They found that adding RBMM to a

GC system with tag words improved execution speed by up to 42%. This

improvement is the result of being able to free some of the memory without

the overhead of GC.

Elsman investigated type safety in the combined RBMM and copy-collector

system implemented for Standard ML[15, 26]. The combined system allows

pointers between regions to exist. A dangling pointer can be created when a

reference between two regions occurs. When the newer region is popped off

of the region stack, the older region will contain a pointer (dangling) that

references newly-reclaimed memory. The author introduced pointer safety,
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and proved the soundness of their implementation, by eliminating dangling

pointers in their region typing system.

In 1998, Christiansen and Velschow investigated adding region semantics

into a Java-like language they designed called “RegJava” [10]. Their system

was inspired by the Tofte approach for ML, thus RegJava uses stack-based

region allocation. However, their system does not implement region inference

statically, and relies on programmer annotations for managing regions. In

many cases, their system is able to improve memory use over that of GC.

Their system also has predictable memory use, which is common for RBMM

systems, since allocation and deallocation are explicit; deallocation is not

dependant on a GC strategy that might take a non-predictable amount of

time.

Predictable and real-time languages are necessary for mission critical

and/or embedded devices. In contrast to GC, RBMM is by its very na-

ture deterministic with respect to memory allocation and deallocation, since

the compiler can insert deallocation calls based on a static analysis. Having

the knowledge of when a variable escapes a function is critical for calcu-

lating how long an object can live. Salaganac, et al. implemented a “fast”

static analysis to aid their goal of implementing RBMM on an embedded

Java framework [52]. This static analysis can be used to implement a semi-

automated region inference algorithm [53]. Their system detects memory

leaks which then produces feedback to the developer, in order to prevent

what the authors term, “region explosion syndrome.” The latter is a prob-

lem of RBMM systems, whereby all objects are allocated from a single region

that lives for the lifetime of program execution. This is analogous to a mem-

ory leak, and has also been noted in the Tofte approach [59]. The authors

found that their benchmarks produce regions of short lifetimes. This is ideal,

since memory is constantly being recycled in a deterministic manner. The

contrast are longer-lived regions, which can occupy a large portion of the

memory space and can become candidates for GC (along with the execution
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cycles required to GC). The authors pointed-out that “for most programming

patterns” their memory consumption was on par with that of GC. However,

they did find a class of programs which performed worse and acted as if they

had memory leaks. The latter exposes a limitation of their analysis.

Another Java implementation using RBMM is that of Cherem and Rug-

ina [7]. Like Salaganac et al., Cherem and Rugina’s approach is based on a

points-to analysis and also suffers from the memory leak problem mentioned

earlier [53]. The authors found that short-lived regions benefit memory uti-

lization, and that many allocations could be placed on the program’s stack,

which reduces the need for heap allocation.

Boyapati, Salcianu, Beebee, and Rinard also investigated implementing

RBMM in a real-time Java framework capable of handling multithreaded

applications. Their approach utilizes combined regions and ownership types

[6]. All objects are allocated from a region, and have an owner (either another

object or region). Ownership types associated to objects are used to generate

an ownership hierarchy-tree during analysis, whereby an object can only be

accessed by an owner. Their system, as with the Gerakios et al. approach [19],

forms a hierarchy of regions and is safe from dangling pointers. This system

also allows multiple processes to share region data.

Chin et al. also implemented a system of region inference for Java which

is based on the Real-Time Java specification [9]. Their approach uses a stack

of regions and never creates dangling references. The authors compare their

fully-automated RBMM system with that of a manually region annotated

system. The authors found that the contrasting manual approach to mem-

ory management “may represent a sizeable mental effort for a programmer

with only a region type checker.” For the set of applications measured, their

automatically annotated system performs just as well as the manually anno-

tated version of the applications.

The Real-Time Java specification defines a lexically scoped region sys-

tem to reduce the amount of time spent garbage collecting and to improve
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system predictability [28]. This system relies on programmer annotations

to define the scopes within a program. Scopes impose a lifetime on objects

allocated within them. As with regions, a scope cannot be freed until all of

its objects are no longer reachable. RTSJ scopes rely on reference counting

to prevent premature scope reclamation. Dangling pointers are eliminated

by preventing older objects from referencing objects with shorter lifetimes.

Nested scopes increase runtime due to the system checking references of the

scopes; reference checks are expensive. The authors found that “most of the

benchmark applications used less heap space when using regions rather than

garbage collection.” Also, the authors pointed out that reference counting

imposes additional time overhead. They also found a higher space overhead

when allocating small lifetime objects inside longer lived scopes. This is the

same as the region bloat problem discussed in Chapter 3.

Stoutamire researched a similar RBMM concept for the Sather program-

ming language to improve memory locality [56]. His model introduced the

concept of zones (regions) which map objects and threads onto hardware.

Zones are organized in a tree structure and can be individually garbage col-

lected. Results from a partial implementation of the author’s zone model

favors zones for speed, in most cases, over a non-zone model. The author

noted that more study needs to be conducted on his model to conclusively

say that a zone-based system is ideal for practical applications.

Gay and Aiken found that their manually annotated RBMM system for

C, using their C@ library, can have performance comparable to manual mem-

ory management in both space and time, while also being better (in many

cases) than a conservative garbage collector [18]. Their approach relies on

reference counting to prevent premature region reclamation. This count re-

flects the number of other regions and variables that point into the region

within question. The authors found that maintaining these counts was ex-

pensive and could comprise anywhere from “negligible to 17% of runtime.”

The authors later improved upon C@ and its reference counting overhead in
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their later research of RC (a region compiler to replace C@) [18].

The safe dialect of C, Cyclone, implements a semi-automatic RBMM sys-

tem, requiring programmers of multi-module programs (programs consisting

of multiple translation units) to manually insert some region annotations [25].

Cyclone does provide automatic default annotations. Their system also con-

tains a garbage collected region for managing reclamation of memory allo-

cated from traditional manual allocations (e.g ., malloc). The system’s region

and control flow analysis is designed such that dangling pointer access is a

compile-time error. All of their results had slightly longer running times

than C versions. This finding is expected, since adding bound and null-

pointer checks produces additional runtime overhead. This overhead was not

significant in the case of non-compute intensive (e.g ., http client) applica-

tions; however, the overhead was significant (from 2.07-2.85 times slower) for

some compute intensive benchmarks.

Lattner and Adve presented an automatic C based implementation of

RBMM for their LLVM system. They found that 25 of the 27 benchmarks

they tested ran faster using RBMM, or “pooled allocation”, than using mal-

loc [42, 43].

The logic programming language Mercury was implemented with an au-

tomated RBMM system, in contrast to its existing garbage collector [49].

Their stackless design was inspired by Cherem and Rugina’s Java RBMM

implementation, to permit shorter-lived regions [48]. Their benchmarks ran

25% faster using RBMM than with the Boehm GC [50]

Parallel processes and threads can complicate how data is accessed, and

the same goes for RBMM. When there is only one process, the order in

which a program accesses memory is trivial and predictable. Therefore, a

compiler can analyze and safely deduce when memory accesses can occur.

With parallel computations, there is not necessarily a deterministic means

of knowing when another process might access the same piece of data that

another process might also be accessing. The term “access” refers to memory
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reads and writes. Gay and Aiken mention that implementing RBMM in a

parallel system should be trivial, as the only locking (to prevent concurrent

data mutation) need to occur on the region creation and removal opera-

tions [17]. In fact, Seidel and Vojdani use region analysis, not for memory

management, but to enhance an interprocedural static analyzer, GobLint.

The latter detects race cases in C programs, and has been used to detect

data races in portions of the Linux kernel [54]. Gerakios, Papaspyrou, and

Sagonas discuss the capability of using a tree-based hierarchy of regions to

facilitate concurrent programming and parallelization for Cyclone. In that

system each region contains locks, which are common in traditional non-

region-based parallel programming [19, 20]. If a processes has a lock on a

memory resource, or region, no other competing processes can access that

data until the lock is released. The results of their hierarchical region locking

show a mix in favor of both the unmodified and modified executables. The

runtimes were nearly double in three of the five benchmarks measured. The

authors attribute the penalty in one of their benchmarks to using multiple

locks on a single data structure and its elements. Ultimately, there is room

for improvements. The key point is that they implemented a safe parallel

system using RBMM. Adve and Lattner mention parallelization for their

C/LLVM implementation of RBMM. They note that if the compiler can de-

termine that two data structures are disjoint and have no shared references,

it is possible to make them parallel [42].
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Chapter 8

Conclusion

This thesis has explored the capabilities that an alternative form for auto-

matic memory management can provide for the Go programming language.

We have discussed the language syntax, concepts of memory management,

and provided an exploration into using RBMM as a method for automatic

memory management. The system we have developed requires no additional

programmer code annotation aside from what the language already provides

(new and make). Thus, we maintain the simplicity for the programmer that

Go provides; The programmer is removed from spending much time reason-

ing (and possibly making poor decisions) about memory management. We

have shown that we can extend an existing language to support RBMM via

use of a GCC plugin and a modified runtime library, which can be linked

with the Go program being compiled.

In Chapter 4 we introduced RBMM concepts and our design via a simple

syntax and semantics. Our goal was to use our RBMM system in Go to reduce

time and space overhead that Go’s existing GC environment would produce.

We have shown that our performance numbers using RBMM are comparable

to unmodified Go benchmarks running with their garbage collector. For one

case in particular, binary-tree, we can significantly reduce execution time

by reducing time spent in GC by using regions. We also show that RBMM

can increase the size of the binary, as a result of our code transformations

inserting region operations into the program at compile time. However we

have seen that region maintenance at runtime produces little overhead. In

fact, it seems that numerous small regions can be beneficial to program exe-

cution time. md :◮Please make sure that I am not lying here. The
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last two points about efficiency and small regions are based on the

binary-tree results from our first paper◭ .

Although we are not the first to combine RBMM and GC, as far as we

know we are the first to combine a region-specific garbage collector that op-

erates directly on regions [11]. Our hope was to eliminate the region-bloat

problem by removing unreachable items from within regions by designing

a region-aware copying garbage collector. We presented such a design and

partial implementation in Chapter 5. With further improvement, our col-

lector can be extended to collect subsets of a program’s memory space. In

other words, acting as an incremental collector operating on a subset of the

program’s regions. This modification should reduce the runtime overhead of

our region-aware garbage collector. We also provided a design for supporting

reclaim of sequences of items within Go’s slice primitive. While we spent

much time implementing a region-aware garbage collector, our result was

buggy and less than effective. Our system does have a bug which we have

spent much time on trying to correct, but to little avail. Our results show

that our bug is not directly garbage collector related.

Our concepts and designs can be extracted from this research and made

production quality. These ideas can be used,not only for Go, but other

languages. Since all of our work transforms GCC’s intermediate GIMPLE

and RTL languages, it should be relatively easy to modify our code to support

other programming languages that GCC can input.

We concluded our exploration by introducing and implementing a de-

sign to support RBMM within the CSP parallel context of Go. We were

able to show comparable time and space measurements on the shortly lived

benchmarks we evaluated.
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