
Towards Region-Based Memory Management for Go

Matthew Davis, Peter Schachte, Zoltan Somogyi, and Harald Søndergaard

Department of Computing and Information Systems and NICTA Victoria Laboratories
The University of Melbourne, Victoria 3010, Australia

mattdavis9@gmail.com, {schachte,zs,harald}@unimelb.edu.au

Abstract

Region-based memory management aims to lower the cost of deal-
location through bulk processing: instead of recovering the memory
of each object separately, it recovers the memory of a region con-
taining many objects. It relies on static analysis to determine the
set of memory regions needed by a program, the program points
at which each region should be created and removed, and, for each
memory allocation, the region that should supply the memory. The
concurrent language Go has features that pose interesting chal-
lenges for this analysis. We present a novel design for region-based
memory management for Go, combining static analysis, to guide
region creation, and lightweight runtime bookkeeping, to help con-
trol reclamation. The main advantage of our approach is that it
greatly limits the amount of re-work that must be done after each
change to the program source code, making our approach more
practical than existing RBMM systems. Our prototype implementa-
tion covers most of the sequential fragment of Go, and preliminary
results are encouraging.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent languages; D.3.4
[Processors]: Memory management (garbage collection); D.4.2
[Operating Systems]: Garbage collection

General Terms Languages, performance, experiments, design

Keywords Go, memory management, memory regions, program
analysis, program transformation

1. Introduction

Memory management, the allocation and deallocation of the mem-
ory used to store the objects a program manipulates, is crucial to
the correct and efficient operation of most programs. If a program
fails to deallocate an object, or deallocates it long after it is last
needed, the program will use too much memory, possibly reducing
performance or even causing the program to run out of memory.
If the program reclaims an object before it is last needed, the pro-
gram may crash or produce incorrect results. Traditionally, in C-
like languages, programmers manage memory manually, and have
to figure out by themselves when an object should be freed. This
is difficult, because whether or not a function can free a particular
object depends not only on the behaviour of that function, but also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MSPC’12 June 16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1219-6/12/06. . . $10.00

on whether or not any code executed subsequently will need that
object. This may be different for different calls to the function, and
it may change as other parts of the program are modified.

Automatic memory management removes this burden from pro-
grammers. Long offered in functional and logic programming lan-
guages, its popularity has spread to imperative languages such as
Java, C#, and Go. The usual form of automatic memory manage-
ment is garbage collection (GC). A GC system periodically finds
all allocated memory blocks that are reachable from registers, the
stack, and global variables, and makes all other allocated blocks
(the garbage) available for reuse. This is safe, as inaccessible ob-
jects will certainly not be used again, but it is also overly conser-
vative, as some reachable blocks may not be used again. GC also
uses significant computation time, so it is run infrequently. This al-
lows allocated but unused memory to build up for a while before fi-
nally being reclaimed, increasing the amount of memory needed to
carry out the computation, and reducing cache performance. Also,
many garbage collectors do not work if the memory they work on is
changed as they operate. This is fine for sequential programs, since
execution waits while garbage is collected, but making all threads
in a parallel program wait during GC significantly reduces the ben-
efits of parallelism. So, languages that support multithreading tend
to prefer GC algorithms that can operate while other cores mutate
memory. While such GC algorithms do not need to “stop the world”
during collections, they have higher overheads.

Region-based memory management (RBMM) is an alternative
to GC that aims to reduce overheads and memory footprint. While
GC works almost entirely at runtime, with relatively little compiler
support (mostly in the form of enforcing rules such as not hiding
pointers from GC), RBMM systems work mostly at compile time.
RBMM systems analyse the program statically to determine which
parts of the program’s memory can be freed at the same time. They
then transform the program, by inserting code to allocate those
structures together, in the same region of memory, and to reclaim
the whole region in a single operation, making all the memory in
that region available for reuse.

An advantage of RBMM is that it does not require a scan of all
of memory to determine which blocks can be reclaimed. Moreover,
it can reclaim large chunks of memory in one fell swoop, rather than
releasing small blocks one by one. It can also use less memory than
GC, because it needs less for its own bookkeeping, and because it
decides what memory can be reclaimed based on what the program
may need to use in the future, rather than on what memory the
program could possibly have access to. This means memory may
be reclaimed more frequently, leading to more consistent memory
usage. In contrast, a GC system will use more and more memory
before periodically reclaiming some of it. It may also happen,
however, that static analysis is unable to distinguish lifetimes well
enough. This may put most of the memory allocated by the program
into a single giant region, which cannot be released until very near
the end of the computation.

Prog → Func∗

Func → func Fname (Var∗) { Stmt∗ return Var }

Stmt → Var = Var

| Var = ∗ Var

| ∗ Var = Var

| Var = Var . Sel

| Var . Sel = Var

| Var = Var [Var]

| Var [Var] = Var

| Var = Const

| Var = Var Op Var

| Var = new Type

| Var = Fname (Var∗)

| Var = go Fname (Var∗)

| Var = recv onVar

| send Var onVar

| if Var { Stmt∗ } else { Stmt∗ }

| loop { Stmt∗ }

| break

Figure 1. A representative Go/GIMPLE fragment

The original work on RBMM targeted Standard ML [16, 17].
The approach has since been applied to other languages, such as
C, C++ [2, 10], Java [3, 4], and Mercury [15]. Different languages
pose different challenges for RBMM; for example, logic program-
ming languages require RBMM to work in the presence of back-
tracking. Here we present our experiences so far with implementing
RBMM for the programming language Go. A prominent feature of
Go are “goroutines”: independently scheduled threads. Goroutines
may share memory, or they may communicate via named channels,
à la Hoare’s Communicating Sequential Processes (CSP). The se-
quential fragment of Go is essentially a safer C extended with many
modern features, including higher-order functions, interface types,
a map type, array slices, and a novel escape mechanism in the form
of “deferred” functions: if a function f calls a deferred function d,
execution of d is scheduled to happen just before control is handed
back to f ’s caller.

Go programmers are required to request dynamic memory via
new or its variant make, which are like malloc in C. The Go
implementation itself uses these primitives. Unlike other languages,
Go allows functions to return references to local variables. To
avoid dangling references, the Go compiler automatically detects
such occurrences, and transforms the function to explicitly allocate
storage on the heap for the variable. Memory is never explicitly
freed by the programmer; instead, current Go implementations use
GC. Our aim is to replace GC by RBMM as far as possible.

We have implemented RBMM as an extension to the gccgo
compiler. Our prototype implementation so far handles almost all
of the first order sequential fragment of Go. In fact our program
analyses and transformations deal with GIMPLE, GCC’s inter-
mediate language, but to make our presentation more accessible,
we discuss our methods as if they apply to a Go/GIMPLE hybrid
whose syntax we give in Figure 1. Reflecting the fact that we deal
with three-address code, we have normalised the fragment in obvi-
ous ways, requiring for example that selectors, indexing, and binary
operations are applied to variables, rather than to arbitrary expres-
sions.

In this paper, we describe an approach to RBMM for a con-
current programming language. The approach is characterised by

a new combination of static analysis to guide region creation and
lightweight runtime bookkeeping to control reclamation. The nov-
elty, and main advantage, of the approach is that it greatly limits
the amount of re-work that must be done after each change to the
program source code, making our approach more practical than ex-
isting RBMM systems.

After an introduction to RBMM in Section 2, we show how we
analyse Go programs to see what regions they need (Section 3). In
Section 4, we show how to transform a program to utilise those
regions. In Section 5 we present performance measurements of
an early implementation of our approach. In Section 6, we briefly
discuss related work, and Section 7 concludes.

2. Region-Based Memory Management

RBMM systems must annotate every memory allocation operation
with the identity of the region that should supply the memory. The
system must also insert calls to the functions implementing the
primitive operations on regions. Since one cannot allocate from a
nonexistent region, and since we want to minimize the lifetime of
each region, we want to insert code to create a region just before
the first allocation operation that refers to that region, and we want
to insert code to remove a region just after the last reference to any
memory block stored in that region. Figuring out which allocation
sites should (or must) use the same regions requires analysis.

Every region must be created and removed. The time taken by
these operations is overhead. To reduce overall overheads, we want
to amortize the cost of the operations on a region over a significant
number of memory blocks. Having each memory block stored in its
own region would impose unacceptably high overheads, though it
would also ensure that its storage is recovered as soon as possible.
Having all memory blocks stored in a single giant region would
minimize overheads, but in most cases, it would also ensure that no
storage is recovered until the program exits. We aim for a happy
medium: many regions, with each region containing many blocks.

We now introduce some concepts that help explain the runtime
support for regions. A region page is a fixed-size, contiguous chunk
of memory. (For allocations that are bigger than a standard region
page, we round up the allocation size to the next multiple of the
standard page size.) A small part is a link field, so that pages can
be chained into a linked list. A region is such a linked list. We
reserve the initial part of the first page of a region’s page list to
hold the region header, which has bookkeeping information about
the region, such as its most recent page and the next available word
in that page. As we explain later, it also includes a mutex and
some counts. The address of a region’s header is the region handle,
through which it is known to the rest of the system. We refer to a
variable that holds a region handle as a region variable.

The run-time system maintains a freelist of unused region pages.
A newly created region contains a single page. As allocations are
made using a particular region, the region will be extended as
needed, taking pages from the freelist if possible. Reclamation of a
region simply means returning its list of pages to the freelist.

The following region operations are inserted into the program
to implement RBMM:

• CreateRegion(): Create an empty region from which data
structures can be allocated.

• AllocFromRegion(r, n): Allocate n bytes from region r.

• RemoveRegion(r): Reclaim the memory of region r so that it
can be reused later, if the region’s protection count and thread
reference count are both zero.

• IncrProtection(r): Increment the region’s protection count, en-
suring that calls to RemoveRegion(r) do not actually reclaim r

S : Stmt → Map → EqConstrs

F : Func → Map → Map

P : Prog → Map

S[[v1 = v2]]ρ = (R(v1) = R(v2))

S[[v1 = ∗v2]]ρ = S[[∗v1 = v2]]ρ = (R(v1) = R(v2))

S[[v1 = v2.s]]ρ = S[[v1.s = v2]]ρ = (R(v1) = R(v2))

S[[v1 = v2[v3]]]ρ = S[[v1[v3] = v2]]ρ = (R(v1) = R(v2))

S[[v = c]]ρ = S[[v1 = v2 op v3]]ρ = true

S[[v = new t]]ρ = true

S[[v1 = recv on v2]]ρ = (R(v1) = R(v2))

S[[send v1on v2]]ρ = (R(v1) = R(v2))

S[[if v then { s1 . . . sn } else { t1 . . . tm }]]ρ

= (

n
∧

i=1

S[[si]]ρ) ∧ (

m
∧

i=1

S[[ti]]ρ)

S[[loop { s1 . . . sn }]]ρ = (
n
∧

i=1

S[[si]]ρ)

S[[break]]ρ = true

S[[v0 = f(v1 . . . vn)]]ρ = θ(πf0...fn(ρ(f)))

where θ = {f0 7→ v0, . . . , fn 7→ vn}

S[[go f(v1 . . . vn)]]ρ = θ(πf1...fn(ρ(f)))

where θ = {f1 7→ v1, . . . , fn 7→ vn}

F [[func f (f1 . . . fn) { s1 . . . sm; return f0 }]]ρ

=

[

f 7→
(

m
∧

i=1

S[[si]]ρ
)

]

P[[d1 . . . dn]] = fix

(n
⊔

i=1

F [[di]]

)

Figure 2. Region constraint generation

until after DecrProtection(r) is called. We explain the role of
this operation in Section 4.3.

• DecrProtection(r): Decrement the region’s protection count.

• IncrThreadCnt(r): Increment the count of threads that contain
references to r, ensuring that calls to RemoveRegion(r) do not
actually reclaim r until after DecrThreadCnt(r) is called. We
explain the role of this operation in Section 4.5.

• DecrThreadCnt(r): Decrement r’s thread reference count.

3. Program Analysis

The job of our analyses is to decide, for each pointer-valued vari-
able in the program, which region should hold the objects to which
it points. We associate with each variable v in the program (or pro-
gram variable) its own region variable, which we denote R(v). If
v1 is a pointer, then R(v1) = r1 means that throughout its lifetime,
from its initialization until it goes out of scope, whenever v1’s value
is not null, v1 will always point into region r1.

We associate a region variable even with non-pointer-valued
variables. If v2 is a structure or array that contains pointers, then
R(v2) = r2 means that all the pointers in v2 will always point
into region r2 when they are not null. If v3 is a structure or array

that does not contain pointers, or if it is a variable of a non-
pointer primitive type such as integer, then R(v3) = r3 means
nothing, and affects no decisions. Equalities of this last type are
redundant, and our implementation does not generate them, but it is
easier to explain our algorithms without the tests required to avoid
generating them.

Our analyses build sets of equality constraints on these region
variables; for example, the assignment a = b would cause us to
generate the constraint R(a) = R(b). If the final constraint set built
by our analysis does not require R(v1) = R(v2), then we can and
will arrange for the memory allocations building the data structures
referred to by v1 and v2 to come from different regions.

Our analyses require every variable to have a globally unique
name, so we rename all the variables in the program as needed
before beginning the analysis. For convenience, we also rename
all the parameters of functions so that parameter i of function f is
named fi. If the function returns a value, we invent a new variable
named f0 to represent it, and modify all return statements to assign
the value to f0 before returning it.

Figure 2 defines the functions we use to generate region con-
straints. The top of the figure gives the types of these functions. In
these types, EqConstrs is the set of equivalence constraints on re-
gion variables (each constraint is itself a conjunction of primitive
equivalences); and Map = Fname → EqConstrs is the set of
mappings from function names to sets of these constraints. S, F ,
and P generate constraints for statements, function definitions, and
programs.

For most kinds of Go/GIMPLE statements, the constraints we
generate depend only on the statement. The most primitive state-
ments are assignments, and since Go/GIMPLE is a form of three-
address code, each assignment performs at most one operation, and
the operands of operations are all variables.

Given the assignment v1 = v2 where v1 and v2 are pointers or
structures containing pointers, they can obviously refer to the same
memory, so we constrain them to get their memory from the same
region. If they are not pointers, this is harmless.

After the assignment v1 = ∗v2, v2 points to the region in which
v1 is stored. Since v2 can point only into R(v2), the region in which
v1 is stored will be R(v2). The region that v1 points into, that is,
R(v1), can thus be reached from R(v2). Most RBMM systems
handle such assignments by establishing a dependence between
R(v1) and R(v2) requiring R(v2) to be reclaimed before R(v1) (if
R(v1) were reclaimed while R(v2) is in use, some pointers in R(v2)
could be left dangling). This scheme allows, for example, the cons
cells of a list to be stored in a different region from the elements
of the list. If the cons cells are temporary while the elements are
longer lived, this allows the list skeleton to be reclaimed earlier.
Our system does not yet incorporate this refinement, though we are
working on it. Instead, we simply require v1 and v2 to be stored in
the same region. This is safe, but overly conservative. We handle
all assignments involving pointer dereferencing, field accesses, and
array indexing the same way, for the same reason.

Assignments involving constants obviously generate no con-
straints. Since Go does not support pointer arithmetic, assignments
involving arithmetic operations have no implications on memory
management. Assignments that allocate new memory also do not
impose any new constraints: the region in which the allocation will
take place is dictated by the constraints on the target variable, not
by any property of the allocation operation itself. Since channels
are allocated with new, they have regions. Later, in section 4.5, it
will become clear why we require messages being sent and received
to have the same region as the channel.

To process a sequence of statements (whether in a function
body, in an if-then-else branch, or in a loop body), we simply
conjoin the constraints from each statement. We also conjoin the

constraints we get from the then-parts and else-parts of if-
then-elses. In Go/GIMPLE, all loops look like infinite loops with
break statements inside if-then-elses. The break statement
generates no new constraints. All these rules say that the constraints
imposed by the primitive statements must all hold, regardless of
how those primitives are composed into bigger pieces of code.

The most interesting statements for our analysis are function
calls. (They may or may not return a value; if they do not, we treat
them as returning a dummy value, which is ignored.) A function
call is the only construct whose processing requires looking at ρ,
which maps the names of functions to the set of constraints we
have generated so far for the named function’s body. That function
body may require some of the function’s formal parameters to be in
the same region, and when processing the call, we need to impose
corresponding constraints on the corresponding actual parameters.

The rule for function calls starts by looking up the name of the
called function in ρ (this is what ρ(f) does); this will yield a con-
straint. It then projects that constraint onto the formal parameters
of the callee, including the one representing the return value. This
discards all the primitive constraints involving variables other than
formal parameters, but keeps their implications. For example, given
the constraints R(f1) = R(v5) ∧ R(v5) = R(f2), the projection
yields R(f1) = R(f2). The rule for function calls then renames
the program variables inside these constraints to refer to the actual
parameters in the caller, not the formal parameters in the callee.
For example, if the call had v8 and v9 in the first two argument
positions, this renaming would yield R(v8) = R(v9).

This process obviously depends on ρ containing the correct
constraint for every function in the program. This is determined by
the fixed point computation in the definition of P . Beginning with
ρ mapping the name of every function to true, reflecting that we do
not yet have any constraints about any of the program’s functions,
we compute a new ρ reflecting the constraints each function would
impose if none of the functions it calls imposed constraints. We
repeat this computation, beginning each iteration with the ρ just
computed, until the resulting ρ is the same in the previous iteration.

Figure 3 is an example program, for which analysis produces
these constraints: for CreateNode: R(CreateNode0) = R(n), for
BuildList: R(n) = R(BuildList1)∧R(CreateNode0) = R(n)
(some additional constraints will occur for temporary variables
introduced in the GIMPLE code, but we ignore those here), and
for main: R(n) = R(head).

This is inherently a whole-program analysis, and that threatens
to make it impractical for real use. Therefore, we have carefully
designed our analysis to permit practical implementation. First, the
analysis is flow and path insensitive, since the order in which state-
ments in a function body are executed, and which arm of a con-
ditional will be executed, are not significant. This helps make the
analysis scalable. More importantly, and contrary to most existing
RBMM implementations to date, our analysis is context (or call) in-
sensitive: the analysis of a function depends only on the functions
it calls, not on the functions that call it. When program transfor-
mations depend upon a whole-program context sensitive analysis,
a change anywhere may require reanalysing and recompiling any
part of the program. With a context insensitive analysis, only mod-
ules that import a changed module will need to be reanalysed and
recompiled, and only when the analysis result for an exported func-
tion has actually changed. We believe this will reduce the need for
reanalysis and recompilation to the point that this approach will be
practical.

4. Transformation

Once the program analysis is complete, we transform the program
to use region-based primitives for memory management. This in-
volves replacing calls to Go’s memory allocation primitive with the

1 package main
2 type Node struct {id int; next *Node;}
3

4 func CreateNode(id int) *Node {
5 n := new(Node)
6 n.id = id
7 return n
8 }
9

10 func BuildList(head *Node, num int) {
11 n := head
12 for i:=0; i<num; i++ {
13 n.next = CreateNode(i)
14 n = n.next
15 }
16 }
17

18 func main() {
19 head := new(Node)
20 BuildList(head, 1000)
21 n := head
22 for i:=0; i<1000; i++ {
23 n = n.next
24 }
25 }

Figure 3. Creating a linked list in Go

1 package main
2 type Node struct {id int; next *Node;}
3

4 func CreateNode(id int, reg *Region) *Node {
5 n := AllocFromRegion(reg, sizeof(Node))
6 n.id = id
7 RemoveRegion(reg)
8 return n
9 }

10

11 func BuildList(head *Node, num int, reg *Region)
12 n := head
13 for i:=0; i<num; i++ {
14 IncrProtection(reg)
15 n.next = CreateNode(i, reg)
16 DecrProtection(reg)
17 n = n.next
18 }
19 RemoveRegion(reg)
20 }
21

22 func main() {
23 reg1 := CreateRegion()
24 head := AllocFromRegion(reg1, sizeof(Node))
25 IncrProtection(reg1)
26 BuildList(head, 1000, reg1)
27 DecrProtection(reg1)
28 n := head
29 for i:=0; i<1000; i++ {
30 n = n.next
31 }
32 RemoveRegion(reg1)
33 }

Figure 4. Same program with region annotations

RBMM memory allocator, and inserting calls to create and remove
regions. To support this, we must also transform functions to take
regions as inputs next to the arguments they are written to expect.

As discussed in Section 3, our analysis only summarises the
region equality constraints imposed by each function and the func-
tions it calls; it does not collect the region constraints imposed by
the callers of each function. This means that some callers to a func-
tion may require a certain region parameter to survive the call to
the function, while others do not (so to minimise memory usage,
it should be reclaimed). Therefore, we introduce region protection
counts and distinguish between reclaiming a region, which actually
deallocates the storage, and removing a region, which reclaims the
region if and only if its protection count is zero. Thus each function
is expected to remove the regions associated with its input parame-
ters, (but not those associated with its return value) as soon as it is
finished with them. When a region passed to a function is needed
after the function call, we increment the protection counter for the
region before the call, and decrement it again after the call. This
small runtime overhead is the price we pay for limiting ourselves
to a context insensitive program analysis. Figure 4 shows the auto-
matically transformed version of the code in Figure 3.

To store objects with undetermined lifetimes, we define a single
special region called the global region. This region exists for the
duration of the computation. Data allocated in the global region can
only be reclaimed by garbage collection, so it is actually allocated
using Go’s normal memory allocation primitives.

We present the transformation of program fragment Syn1 into
Syn2 using the notation:

Syn1 Syn2

Transformations may be applied in any order, and we apply them
repeatedly as long as any of them are applicable.

We use a few auxiliary functions to access the analysis re-
sults for program P . compressf 〈r1, . . . rn〉 is the list of regions

〈r1, . . . rn〉, except for the removal of duplicates, as implied by
the region equality constraints for f ’s formal parameters and re-
turn value. reg(f) is the set of all distinct regions needed for
the definition of function f , as determined by P(P)(f). ir(f) is
the set of distinct regions of the parameters of function f , that
is ir(f) = compressf 〈R(f1), . . .R(fn),R(f0)〉. (Since these re-
gions are given to f by its caller, they are f ’s input regions.)
used(S1; . . . Sn) is the set of regions used by any of the statements
S1; . . . Sn. nonlocal(S) is the set of regions used for variables ap-
pearing in statement S other than for variables scoped to S or some
statement within S. That is, it is the set of regions used within S
that may need to outlive S.

4.1 Region-Based Allocation

We must replace all uses of Go’s new or make primitives with
calls to our special region allocator, AllocFromRegion(r, n). This
primitive requests n bytes of dynamic data from region r.

v = new t v = AllocFromRegion(R(v), size(t))

4.2 Function Calls and Declarations

Every function that takes data structures as input or returns them
as output must be transformed to also expect region arguments. We
indicate the region arguments of a function by enclosing them in
angle brackets following the ordinary function arguments:

f(a1, . . . am)〈r1, . . . rn〉

We use this notation for clarity; our implementation handles region
arguments the same way as other arguments.

The transformation must add a region parameter for each func-
tion parameter that holds a structure, plus one if the result is a struc-
ture. However, if the analysis has determined that the regions of two
or more parameters must be equal, only the first must be added.

This permits us to transform function definitions to introduce
region parameters:

func f(f1, . . . fn) {

S1; . . . Sm;

return f0;

}

func f(f1, . . . fn)〈r1, . . . rp〉 {

S1; . . . Sm;

return f0;

}

where 〈r1, . . . rp〉 = ir(f)

This adds a region parameter for each function parameter, but
excludes any that the analysis pass has determined must be equal
to the region for a parameter appearing earlier in the parameter list.
A corresponding transformation introduces region arguments into
function calls:

v = f(v1, . . . vn) v = f(v1, . . . vn)〈r1, . . . rp〉

where 〈r1, . . . rp〉 = compressf 〈R(v1), . . . ,R(vn),R(v)〉

This transformation also adds a region argument for each function
argument, using the analysis of the function being called to com-
press out redundant regions. The appropriate region to pass for each
argument, and for the return value, is determined by the analysis.

4.3 Region Creation and Removal

The transformation pass tries to create regions at the latest possible
time, and remove them as early as possible. There are two ways
a function may obtain a region: it may receive the region from
its callers, or it may create the region itself. Conversely, there are
three ways a function may finish with a region: it may explicitly
remove the region, it may pass the region to a function that is
responsible for removing it, or in the case of the region associated
with the function’s value, it may allow the region to remain after
the function completes execution. This is handled by the following
transformations.

func f(f1, . . . fn) {

S1; . . . Sm;

return f0;

}

func f(f1, . . . fn) {

C;S1; . . . Sm;R;

return f0;

}

where C = {r=CreateRegion(); | r ∈ reg(f) \ ir(f)}

R = {RemoveRegion(r); | r ∈ reg(f) \ {R(f0)}}

This places all the needed allocations at the beginning of each
function body, and all required region removals at the end. The next
two transformations migrate those primitives to their best location
in the function body.

r=CreateRegion();

S1; . . . Sm;

Sm+1; . . . Sn;

S1; . . . Sm;

r=CreateRegion();

Sm+1; . . . Sn;

where r 6∈ used(S1; . . . Sm)

S1; . . . Sm;

Sm+1; . . . Sn;

RemoveRegion(r);

S1; . . . Sm;

RemoveRegion(r);

Sm+1; . . . Sn;

where r 6∈ used(Sm+1; . . . Sn)

For convenience, our implementation actually places the removal
at the end of the basic block that contains the statement of last use
for that region.

Two more transformations allow region creation and removal
to migrate into loops and conditionals. Moving region creation and
removal into a loop adds runtime overhead, but by reclaiming mem-
ory earlier, it may significantly reduce peak memory consumption.
Since the compiler cannot determine whether the amount of mem-
ory that will be allocated across a loop could lead to out-of-memory
errors, we push region creation and removal (as a pair) into loops
where possible. We also push region creation and removal into con-
ditionals where possible, because it can reduce peak memory use.

r = CreateRegion();

loop {

S1; . . . Sm;

}

RemoveRegion(r);

loop {

r = CreateRegion();

S1; . . . Sm;

RemoveRegion(r);

}

where r 6∈ nonlocal(loop {S1; . . . Sm; })

r = CreateRegion();

if t {

S1; . . . Sm;

} else {

Sm+1; . . . Sn;

}

if t {

r = CreateRegion();

S1; . . . Sm;

} else {

r = CreateRegion();

Sm+1; . . . Sn;

}

if t {

S1; . . . Sm;

} else {

Sm+1; . . . Sn;

}

RemoveRegion(r);

if t {

S1; . . . Sm;

RemoveRegion(r);

} else {

Sm+1; . . . Sn;

RemoveRegion(r);

}

Our final region creation and removal transformation may be useful
when only one arm of a conditional uses a region:

S1; . . . Sm;

r = CreateRegion();

RemoveRegion(r);

Sm+1; . . . Sn;

S1; . . . Sm;

Sm+1; . . . Sn;

4.4 Region Protection Counting

To remove each region at the earliest possible time, we must put a
call RemoveRegion(r) immediately after the last use of any object
stored in region r. To determine even a conservative approximation
of the earliest place each region can be removed requires a global

analysis of the program. This is difficult to implement, and doubly
so to implement incrementally, so that after a small change to a
program, only the functions that need to be reanalysed will be.

We have not yet implemented a global analysis. Our current
analysis processes the modules of the program, and the functions
in each module, bottom-up (analysing callees before callers, and
analysing mutually recursive functions together). This is simple
and allows efficient compilation, but does not permit the code
generated for a function to be influenced by call contexts. When
compiling a function, we cannot know whether or not it should
remove the regions it uses; that depends on the call path to that
function (that is, the call stack at the time the function is called).

The ideal way to allow the caller to determine which regions are
removed is to have a specialized version of each function for each
combination of regions it should free. However, this can generate
exponentially many versions of each function, and may greatly in-
crease the size of the executable, reducing instruction cache effec-
tiveness. Another alternative would be for each function to remove
only the regions that all its callers agree should be removed, and for
callers of that function that require any other region to be removed
to remove it themselves after the call. However, by delaying region
removal, this may increase peak memory consumption, possibly to
an unacceptable level.

We have implemented a third approach: dynamic protection
counts. With this approach, each region maintains a protection
count of the number of frames on the call stack that need that region
still to exist when they ultimately continue execution. We transform
each function to remove all regions passed to it as arguments,
except the region for the return value, provided their protection
count is zero. We also transform the function body so that for each
region r that is passed in a function call, if any variable v with
R(v) = r is needed after the call, we invoke IncrProtection(r)
before the call, and we invoke DecrProtection(r) after the call:

S1; . . . Sm;

v = f(. . .)〈. . . , r, . . .〉

Sm+1; . . . Sn;

S1; . . . Sm;

IncrProtection(r);

v = f(. . .)〈. . . , r, . . .〉

DecrProtection(r);

Sm+1; . . . Sn;

where r ∈ used(Sm+1; . . . Sn)

However, if r is not needed after the call, we do not do this
transformation. This ensures that if a function f is called with a
region r in a state that would allow it to be removed, and if the last
use of r in f is in a call to g, g will be called in a state that would
allow r to be removed.

A simple additional transformation can remove unnecessary
calls to IncrProtection(r) and DecrProtection(r), leaving only
the first increment and last decrement.

S1; . . . Sm;

DecrProtection(r);

Sm+1; . . . Sn;

IncrProtection(r);

Sn+1; . . . Sq;

S1; . . . Sm;

Sm+1; . . . Sn;

Sn+1; . . . Sq;

We have not yet implemented this transformation. More impor-
tantly, we plan to implement an extra analysis pass that will col-
lect, for each call to each function, information about the protec-
tion state of each region involved in the call. Specifically, we want
to know whether its maximum protection count at the time of the
call is zero, and whether its minimum protection count is at least

one. If we have this information about all calls to a function, then
we can optimize away either the function’s remove operations on a
region (if all the callers need the region after the call) or the “test
of the protection count” inside those remove operations (if none of
the callers need the region after the call). If the calls disagree about
whether they need a region after the call or not, we can also create
specialized versions of the function for some call sites, preferably
the ones which are performance critical.

It is important to note that a region’s protection count indicates
the number of stack frames that refer to the region. We modify
this counter only twice per function call: once to increment it and
once to decrement it. This is in contrast to reference counts, which
count the number of individual pointers to an object or region. For
example, in RC [7], a region-based dialect of C, reference counts
must be updated for each pointer assignment. To our knowledge,
protection counting is unique to our approach.

4.5 Goroutines

A Go program can create a new thread of execution by simply
prefixing a function call (to a function that does not return a value)
with the keyword go. The new function invocation will then execute
in a new independently-scheduled thread, which will terminate
when the call returns. Since the new thread can execute in parallel
with its parent, operations on any regions passed from the parent
thread to the new thread will need synchronization. Our analysis
marks regions passed in such calls, and our transformation, when
it sees the marks, generates calls to modified versions of the region
creation, allocation and removal operations.

For creation operations, the modification allocates spaces for
and initializes two additional fields in the region header: a mutex,
and count of threads referring to the region.

For allocation operations, the modification turns the usual code
of the operation into a critical section that is protected by the mutex
field in the region header, though this extra synchronization can be
optimized away on allocation operations in the main thread before
the first goroutine call involving the region.

For remove operations, the modification operates, under mutual
exclusion, on the field in the region header that records the number
of threads that contain references to the region. When the region is
created, we initialize this field to one. When the region is mentioned
as an argument in a goroutine call, we increment this counter.
Just before a thread executes an operation to remove the region,
at the point where it has no further references to the region, we
decrement the counter. If it is still positive, some other threads are
still using the region, so the remove operation will actually reclaim
the memory of the region only if the counter has gone to zero. This
runtime test is necessary because, while a static analysis can figure
out the program point in the body of each thread that makes the last
reference to a region in that thread, the question of which of these
per-thread last references is actually executed last at runtime may
depend not just on the input to the program but also on accidents of
scheduling, and thus in general it cannot be decided statically.

The overall transformation is shown below. (The function in-
voked by a goroutine cannot return a value.) Our analysis treats the
spawned-off function f’ a bit like we treat main. Like main, when
f’ exits, its thread will not have any remaining references to the
regions it handles, but unlike main, it gets some regions from its
parent thread, and does not have to create them all itself.

Note that the increments must be done in the parent thread;
if they were in the child thread in f’, the parent thread could
delete a region before the child thread gets a chance to perform
the increment that would prevent that.

go f(v1, . . . vn)〈r1, . . . rp〉;

IncrThreadCnt(r1); . . .

IncrThreadCnt(rp);

go f ′(v1, . . . vn)〈r1, . . . rp〉;

where func f ′(f ′

1, . . . f
′

n)〈r1, . . . rp〉 {

dummyvar = f(f ′

1, . . . f
′

n)〈r1, . . . rp〉;

DecrThreadCnt(r1); . . .DecrThreadCnt(rp);

RemoveRegion(r1); . . .RemoveRegion(rp);

return dummyvar;

}

We can optimize the above code in some cases. For example, in
some cases we can guarantee that some per-thread last references
cannot be the last reference globally. For example, if two threads
communicate using a unbuffered channel, meaning that the writing
thread will block until the reading thread is ready to read, and if the
last reference to a region in the reading thread is before the read
while the last reference to that region in the writing thread is after
the write, then we know that the last reference to the region in the
reading thread cannot be the overall last reference to the region. In
that case, we can optimize away the call to RemoveRegion after
the call to DecrThreadCnt in the reading thread. In fact, since
the writing thread will keep the region alive as long as the reading
thread needs it alive, DecrThreadCnt operation, together with the
corresponding IncrThreadCnt when the thread is created.

Another optimization applies when a goroutine call site is the
last reference to a region in the parent thread. In that case, the incre-
ment of the thread reference count at the call site and its decrement
in the remove region operation in the parent immediately afterward
would cancel each other out, and thus both can optimized away.
Unfortunately, this optimization and the previous one exclude each
other; we cannot apply both, even if both are otherwise applica-
ble. If we did, we would optimize away a single increment of the
counter but two decrements of that counter, leaving an incorrect
final value.

When a thread t1 sends a message to another thread t2, with a
statement such as send v1on v2, the code of executed by t1 effec-
tively decides what region supplies the memory for the message: it
will be R(v1). When t2 receives the message, it will do so with a
statement such as v3 = recv from v4. After this statement, t2
will believe the message to be in region R(v3). We need this to be
the same as R(v1), since otherwise the two threads will disagree
on when the region of the message can be reclaimed. We ensure
this by imposing this chain of equalities: R(v1) = R(v2) = R(v4)
= R(v3). The first equality is from the analysis rule for send state-
ments; the third is from the rule for recv statements; and the sec-
ond follows from the fact that for the message to be transmitted, v4
must refer to the same channel, and thus the same region, as v2.

There are two ways two threads can communicate. One way is
for both to be given a reference to the same channel by a common
ancestor (which may be one of the threads themselves). In this
case, a variable representing the channel will be an argument in
a goroutine call, and therefore after our transformations, the region
of that channel will be passed along with it. The other way is for
one or both of the threads to receive the id of the channel in a
message. Our current setup stores all parts of a data structure in
the same region, and this certainly applies to data structures sent as
messages. This implies that (a) a channel in a message is stored in
the same region as the message, while the rule for send operations
says that (b) a message is stored in the same region as the channel
it is sent through. Together (a) and (b) imply that if a channel c2
that is sent in a message on channel c1, then R(c1) = R(c2).

Benchmark GC RBMM

Name LOC Repeat Alloc Mem Collections Regions Alloc% Mem%

binary-tree-freelist 84 1 270 227Mb 3 1 0% 0%

gocask 110 100k 56M 3.8Gb 97k 700,001 0.5% 0.1%

password hash 47 1k 160M 13Gb 145k 5,001 ˜0% ˜0%

pbkdf2 95 1k 115M 8Gb 92k 12,001 0% 0%

blas d 336 10k 6M 890Mb 11k 57,0001 9.2% 9.1%

blas s 374 100 49k 5Mb 58 5,001 10.1% 21.0%

binary-tree 52 1 607M 19Gb 282 2,796,195 ˜100% ˜100%

matmul v1 55 1 6k 72Mb 10 4 96.0% 99.9%

meteor-contest 482 1k 3M 165Mb 2k 3,459,001 ˜100% 99.9%

sudoku v1 149 1 40k 12Mb 110 40,003 98.8% 99.2%

Table 1. Information about our benchmark programs

Benchmark MaxRSS (megabytes) Time (secs)

Name GC RBMM GC RBMM

binary-tree-freelist 891.84 892.01 (100.0%) 12.4 12.2 (98.4%)

gocask 27.45 27.63 (100.7%) 71.6 69.7 (97.3%)

password hash 26.60 26.80 (100.7%) 119.0 119.1 (100.1%)

pbkdf2 26.37 26.58 (100.8%) 71.4 71.6 (100.3%)

blas d 25.87 26.14 (101.0%) 5.4 5.4 (100.0%)

blas s 26.05 26.29 (100.9%) 12.2 12.1 (99.2%)

binary-tree 1323.74 1196.51 (90.4%) 79.2 14.7 (18.6%)

matmul v1 313.03 307.87 (98.4%) 11.7 11.7 (100.0%)

meteor-contest 27.41 27.11 (98.9%) 11.0 11.0 (100.0%)

sudoku v1 26.96 26.65 (98.8%) 15.6 16.5 (105.8%)

Table 2. Benchmark results

This means that even if t1 and t2 communicate on channels sent
in messages, those channels use only regions whose identities are
passed between threads at goroutine calls.

Our system of equating the regions of messages and channels
allows the region of a message to be reclaimed while the message
is in a channel only if the channel itself is being reclaimed. This can
happen if, after a message is sent on a channel, all references to the
channel become dead. If that happens, no thread can ever receive
the message, so recovering its memory is safe.

5. Evaluation

To test the effectiveness of our implementation, we benchmarked a
suite of small Go programs. (We cannot yet test larger programs
due to our as yet incomplete coverage of Go.) The benchmark
machine was a Dell Optiplex 990 PC with a quad-core 3.4 GHz
Intel i7-2600 CPU and 8 Gb of RAM, running Ubuntu 11.10, Linux
kernel version 3.0.0-17-generic. We used GCC 4.6.3 to run our
plugin and compile the benchmarks, but linked with GCC 4.6.1
libraries supplied with the operating system.

Table 1 has some background information about our benchmark
programs. Some of these are adaptations of Debian’s “Computer
Language Benchmarks Game” provided by the GCC 4.6.0 Go test-
suite and aimed at measuring language performance (binary-tree,
binary-tree-freelist, meteor-contest). The matmul v1
and sudoku v1 applications are from Heng Li’s “Programming
Language Benchmarks” [12], and the remaining programs are
from libraries: Michal Derkacz’s blas d and blas s [6], Dmitry
Chestnykh’s passwordhash and pbkdf2 [5], and Andre Moraes’

gocask [13]. The Name and LOC columns of the table give the
name of the benchmark, and its size in terms of lines of code.

The inputs provided by the GCC suite for some of the programs
are so small that they lead to execution times that, due to clock
granularity, are too small to measure reliably. We gave some of
these benchmarks larger inputs than the ones in the GCC suite.
Where this was impossible or insufficient, we modified the program
to repeat its work many times; the Repeat column shows how many.

The Alloc and Mem columns give respectively the number of ob-
jects allocated by each iteration of the program, and the amount of
memory these allocations request. These numbers were measured
on the original version of each benchmark program, which used
Go’s usual garbage collector. The Collections columns gives the
number of times the number of collections in each iteration. (For
the gocask benchmark, different runs of the program do different
numbers of collections, due to the use of parallelism by a library.)

The last column group describes the results of our region analy-
sis and its effects. The numbers come from a version of each bench-
mark program that was compiled to use our RBMM system. The
Regions column gives the number of regions our analysis infers
for a single run of the program; the global region counts as one of
these. The Alloc% column says what percentage of the allocations
made by the program at runtime are from a non-global region, and
therefore handled by our system. (The rest, the allocations from the
global region, are handled by Go’s usual garbage collector.) The
Mem% column says what percentage of the bytes allocated by the
program at runtime are from a non-global region.

Table 2 contains our main performance data. Both column
groups in this table compare the performance of each benchmark
when compiled to use Go’s usual garbage collector (the columns

labelled GC) and when compiled with our experimental RBMM
system (the columns labelled RBMM, which also show the ra-
tio between the GC and RBMM results). The column group named
“MaxRSS” reports the maximum size, in megabytes, of the resident
set of the program at termination, as reported by the GNU “time”
command. Likewise, the column group named “Time” reports the
wallclock execution time of each benchmark in seconds.

We generated the two versions of each benchmark by compiling
them with gccgo without any command line options beyond those
selecting GC or RBMM, so all the programs were built at the
default optimization level. To avoid measuring OS overheads, we
disabled any output from the benchmarks during the benchmark
runs. To eliminate the effects of any background loads, both the
MaxRSS and Time results are averages from 30 trials.

We used the numbers in the Alloc% and Mem% columns to
cluster the benchmarks into three groups; the benchmarks in each
group are sorted by name. For the programs in the first group,
our system does virtually all memory allocations from the global
region, basically handing responsibility for memory allocations
back to Go’s garbage collector. For the programs in the second
group, we do some allocations from non-global regions. For the
programs in the third group, we do virtually all allocations from
non-global regions, hardly using the garbage collector at all.

The gccgo runtime in Ubuntu’s libgo0 4.6.1 provides a basic
stop-the-world, mark-sweep, non-generational garbage collector.
As usual, collections occur when the program runs out of heap at
the current heap size. After each collection, the system multiplies
the heap size by a constant factor, regardless of how much garbage
has been collected.

The benchmarks in the first two groups typically need more
memory with RBMM than with GC, but the difference is small,
and does not depend on how much memory the program allocates.
This difference in MaxRSS has two sources. The first source is
code size. The RBMM versions of the benchmarks have more
code than the GC versions, for two reasons: first, the library that
contains the implementation of all RBMM operations is included
in the RBMM versions of benchmarks but not the GC versions,
and second, the transformations of Section 4 only increase code
size, never decrease it. (The first effect is constant at 72 Kb, while
the second scales with the size of the program.) Since even a Go
program that does nothing has a MaxRSS of 25.48 Mb, due to
the size of all the shared objects (such as libc) linked into every
Go program, the benchmarks that report a MaxRSS around 26 or
27 Mb in fact use about 1 or 2 Mb of data. Therefore for these
programs, code size differences are a large part of the overall
differences in MaxRSS (the maximum such difference is only 270
Kb). The second source of difference in MaxRSS is that the RBMM
versions need to allocate region pages, and since these programs
do relatively few allocations using regions, not all the memory in
these pages is used. The GC versions of the benchmarks use one
data structure that can suffer from internal fragmentation, while the
RBMM versions use two.

The MaxRSS results for the benchmarks in the third group
show that if a program makes extensive enough use of region
allocations, the RBMM system can deliver an overall saving in
memory usage. On all of these programs, the savings we achieve
by freeing regions right after they become dead outweigh the extra
costs increased code size and additional internal fragmentation.
For one of these benchmarks, binary-tree, the saving is pretty
significant. For the other three, the overall saving is more modest,
but for meteor-contest and sudoku v1, the saving in the part of
the RSS we have control over, the part above the 25.48 Mb RSS of
the program that does nothing, the relative saving, is in fact quite
significant.

With respect to timing, we get a big win on binary-tree, a
program that was designed as a stress test for garbage collectors.
It allocates many small nodes, which the GC system must scan
repeatedly. The RBMM version can put all the nodes in regions
where their memory can be reclaimed without any scanning. This
makes the RBMM version more than fives times as fast as the GC
version, while using about 10% less memory.

Another version of this program, binary-tree-freelist,
has its own built-in allocator, including a freelist; when a mem-
ory block is no longer needed, this version puts it into its own
freelist, which is stored in a global variable. Later allocations get
blocks from the freelist if possible. This ensures that all memory
blocks ever allocated are not just reachable, but also potentially
used throughout the program’s entire lifetime, which makes this
a worst case for any automatic memory management system. Our
region analysis detects that all this data is always live, so it puts all
the data allocated by this benchmark into the global region, which
is handled by Go’s garbage collector. So in this case the RBMM
and GC versions actually do the same work and consume the same
memory. However, the exact instruction sequences they execute
do differ slightly, so their timing results differ too, probably due
to cache effects. The results on this benchmark tell us that in this
benchmarking setup, this speed difference of 1.6% is in the noise,
and is not a meaningful difference.

We get a slightly higher speedup, 2.7%, for gocask. Since this
program does allocate some memory from a non-global region, this
speedup could conceivably come be due to those region allocations,
but since this program does very few of those, this speedup figure
is also very likely to be noise. The same is true for all the deviations
from 100% for all the other programs in the first two groups.

In the third group, one program, binary-tree, gets a spectacu-
lar, more-than-five-fold speedup, two have no change in speed, and
the fourth, sudoku v1, gets a slowdown.

The original, GC version of binary-tree allocates a lot of
relatively long-lived memory: it has the biggest MaxRSS of all
our benchmarks. Each GC pass has to scan all this memory. The
RBMM version of this program allocates all these nodes in regions,
whose memory can be recovered without scanning their contents.
Since the GC version spends most of its time in this scanning,
avoiding these scans gives the RBMM version its huge speedup.

The next program in this group, matmul v1, has very few allo-
cations and very few collections: apparently, most of the few blocks
it allocates are very long lived. Because of this, the GC version
spends a negligible fraction of its runtime scanning the heap and
freeing blocks, so the effect on the program’s overall runtime would
also be negligible even if the RBMM version sped up this fraction
of the program’s runtime by a factor of infinity.

The meteor-contest program does about three and a half
million allocations. In the RBMM version, each of these allocations
has its own private region, so this version of the program does three
and a half million region creations and removals. Hence it recovers
the memory of every block one by one, just like the GC version.
The fact that we do not suffer a slowdown on this benchmark shows
that our region creation and removal functions are efficient.

The sudoku v1 benchmark puts almost all of its memory in
regions, and this allows it to use less memory than the GC version.
Nevertheless, the RBMM version of this benchmark is slower than
the GC version. We believe this happens because this benchmark
has many function calls that involve regions, and the extra time
spent by the RBMM version reflects the cost of the extra parameter
passing required to pass around region variables. We have some
ideas for optimisations that can reduce this overhead.

6. Related Work

Tofte and Talpin [16] introduced RBMM for Standard ML. Their
seminal idea was to allocate data, based on lifetimes, into stacks of
regions. They found that the maximum resident memory size often
favored the RBMM approach, while garbage collection was often
faster. Aiken, Fähndrich and Levien [1] observed that significantly
better results were possible by liberating region lifetimes from hav-
ing to coincide with lexical scope, that is, from the stack discipline.

Cherem and Rugina [4] implemented RBMM for Java using a
points-to analysis. The authors found that short-lived regions help
memory utilization, and they found that many allocations could be
placed on the program’s stack.

Phan [14] also used a points-to-graph to implement RBMM for
Mercury. Like Cherem and Rugina, he provided a flow-insensitive
analysis and avoided imposing stack discipline on regions. His
analysis created regions based on types, allowing different parts
of a composite object to be stored in different regions. This can im-
prove memory reuse [14], since it permits, for example, a relatively
short-lived list skeleton to be stored in separate region from the list
elements, which may have longer lives.

Berger, Zorn, and McKinley [2] provided a thorough investiga-
tion of manual memory management, looking at both traditional
and custom general-purpose memory allocators, with some of the
custom allocators being based on regions. They also presented a
new system, called a reap allocator, which acts as a combination
of both general purpose and region allocators. Their results (Fig-
ures 5a and 5b) show that on both memory consumption and ex-
ecution time, the custom region allocators beat the Doug Lea al-
locator on 3 of 5 benchmarks, and the reap allocator on 4 of 5
benchmarks. These results are encouraging, even though the gen-
eral purpose and reap allocators can recover individual objects and
the custom region-based allocators cannot. On the other hand, auto-
matic RBMM systems may not be able to replicate the performance
of these manually tuned region allocators.

Lattner and Adve [10, 11] used regions for C/LLVM. They
found that 25 of the 27 benchmarks they tested ran faster using
RBMM, or “pooled allocation”, than using malloc. Grossman et
al. [9] introduced Cyclone, a safe dialect of C. Unlike Lattner and
Adve’s system, Cyclone requires programmers to explicitly write
calls to all the region operations: creation, allocation, and removal.

Gay and Aiken [7] investigated the use of regions in C@, their
dialect of C. They counted references from pointers to determine
when a region can be deleted. Gay and Aiken found maintaining
these counts to be expensive. In contrast, our use of protection
counts is much cheaper, since the counts need to be updated only
at call sites, rather than at every pointer assignment.

Gerakios, Papaspyrou and Sagonas [8] proposed the use of a
tree-based hierarchy of regions for parallelization. Their regions
contained locks protecting the critical sections from parallel access.
Later the authors implemented concurrent regions in Cyclone.

Boyapati et al. [3] proposed a memory management technique
that combines regions and ownership types. This, like the Gerakios
et al. approach [8], is safe from dangling memory pointers. Their
implementation focused on a real-time version of Java.

7. Conclusion

We have introduced a novel approach to fully automatic memory
management for the Go programming language employing region-
based storage. It is based on a combination of static analysis to
guide region creation, and lightweight runtime bookkeeping to help
control reclamation. Previous work has shown region-based mem-
ory management to be competitive with garbage collection in many
environments. While our implementation is a work in progress,

preliminary testing gives us hope that region-based memory man-
agement will also work well for Go.

Traditional region analysis algorithms propagate information
from callees to callers and vice versa. This means that any change
to the program source code may require reanalysis of many parts
of the program. If some of these reanalyses yield changed results,
then these changes will have to be propagated likewise. Reanal-
ysis can end only when it reaches a fixed point. In contrast, our
system propagates information only from callees to callers. This
means that after a change to a function definition, we only need to
reanalyse the functions in the call chain(s) leading down to it.

We are in the process of extending our implementation to sup-
port all of Go. This means handling both parallel constructs (along
the lines shown in Section 4.5) and higher-order constructs (includ-
ing defer statements and interface types). We also intend to imple-
ment a number of optimizations, including multiple specialization
of functions, as well as allowing different parts of a data structure to
be stored in different regions if they have different lifetimes. While
making these changes, we intend to ensure that reanalysis times
remain practical.

References

[1] A. Aiken, M. Fähndrich, and R. Levien. Better static memory man-
agement: Improving region-based analysis of higher-order languages.
In Proc. PLDI 1995, pages 174–185. ACM Press, 1995.

[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom
memory allocation. In OOPSLA 2002, pages 1–12. ACM Press, 2002.

[3] C. Boyapati, A. Salcianu, W. Beebee Jr., and M. Rinard. Ownership
types for safe region-based memory management in real-time Java. In
Proc. PLDI 2003, pages 324–337. ACM Press, 2003.

[4] S. Cherem and R. Rugina. Region analysis and transformation for Java
programs. In Proc. 4th ISMM, pages 85–96. ACM Press, 2004.

[5] D. Chestnykh. Passwordhash and PBKDF2 Go libraries. URL https:
//github.com/dhcest/passwordhash.

[6] M. Derkacz. BLAS: Basic linear algebra subprograms for Go. URL
https://github.com/ziutek/blas.

[7] D. Gay and A. Aiken. Language support for regions. In Proc. PLDI

2001, pages 70–80. ACM, 2001.

[8] P. Gerakios, N. Papaspyrou, and K. Sagonas. A concurrent language
with a uniform treatment of regions and locks. In Electronic Proced-

ings in Theoretical Computer Science, pages 79–93, 2010.

[9] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. In Proc. PLDI 2002,
pages 282–293. ACM Press, 2002.

[10] C. Lattner and V. Adve. Automatic pool allocation for disjoint data
structures. SIGPLAN Notices, 38:13–24, 2003.

[11] C. Lattner and V. Adve. Automatic pool allocation: Improving perfor-
mance by controlling data structure layout in the heap. In Proc. PLDI

2005, pages 129–142. ACM Press, 2005.

[12] H. Li. Programming language benchmarks. URL http://
attractivechaos.github.com/plb/.

[13] A. Moraes. Gocask library. URL http://code.google.com/p/
gocask.

[14] Q. Phan. Region-Based Memory Management for the Logic Program-

ming Language Mercury. PhD thesis, Catholic University of Leuven,
Belgium, 2009.

[15] Q. Phan, Z. Somogyi, and G. Janssens. Runtime support for region-
based memory management. In Proc. 8th ISMM, pages 61–70. ACM
Press, 2008.

[16] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In Proc. 21st POPL, pages
188–201. ACM Press, 1994.

[17] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-

mation and Computation, 132(2):109–176, 1997.

