UNICOS System Information [2]

CAL, the Cray assembler, supports binary definition files and
interfaces with the UNICOS operating system.

A typical interactive session involves assembling a CAL source
file to create a relocatable object file. A link editor or loader
processes the object file to create an executable file. This process
is accomplished by entering a series of commands at the

command line. (For more information, see subsection 2.2, page
19.)

CAL does not use the standard input file or standard output file
during assembly; however, it does use the standard error file to
report diagnostic and source line messages.

CAL generates listing and diagnostic messages during assembly.
When the —| and —L options are specified on the as(1) command
line and a syntax or semantic error is encountered, the
assembler generates listing messages. A message is printed in
the listing after each source statement flagged by the assembler
and a pointer identifies the location within the source statement
that corresponds to the message. The message also is issued to
the standard error file.

CAL generates diagnostic messages that provide user
information about the assembly (comment, note, and caution)
and CAL assembler errors (warning and error). Diagnostic
messages are classified by level of severity from low to high, as
follows:

» User information about the assembly

— Comment (statistical information)
— Note (possible assembly problems)

— Caution (definite user errors during assembly)
« CAL assembler errors
— Warning (possible error such as truncation of a value)

— Error (fatal assembly error, you should check the message
and source code carefully for possible mistakes)

SR-3108 9.1 Cray Research, Inc. 11

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Note: To print comment-, note-, and caution-level diagnostic
messages to the standard error file, you must specify the —m
option on the as(1) command line.

as(1) - CAL The UNICOS as(1) command invokes the CAL assembler. The
command line format of the as(1) command is as follows:

2.1

as [—oobjfile]l [-| Istfile] [-L msgfile] [-b bdflist] [-B]
[—c bdfile]l [-D micdef] [-g symfile] [-G] [-C cpu] [-h] [-H]
[-i nlist] [-] options] [-mmlevel] [-M [-n number] []
[=F1[=j 1 [F31 [-Ul [- V] file

The as(1) command assembles the specified file. The following
options, each a separate argument, can appear in any order, but
they must precede the file argument:

—0 objfile Relocatable assembly output is stored in file
objfile. By default, the relocatable output
file name is formed by removing the path
name and the . s suffix, if they exist, from
the input file and by appending the . o
suffix. A link editor or loader must process
objfile.

- Istfile Assembly output source listing is stored in
file Istfile. By default, the output source
listing is suppressed.

—L msgfile Assembly output source message listing is
stored in file msgfile. By default, the output
message listing is suppressed.

—b bdflist Reads the binary definition files stored in
one or more files. The files specified in
bdflist can be designated using one of the
following forms:

» List of files separated by a comma

» List of files enclosed in double quotation
marks and separated by a comma and/or one
or more spaces

12 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

UNICOS System Information [2]

SR-3108 9.1

-B

—C bdfile

—D micdef

—g symfile

The files listed in bdflist are read in the
order specified. By default, the binary
assembler definitions found in file

/1i b/ asdef are also read unless
suppressed with the —B option.

Suppresses / | i b/ asdef as the default
binary assembler definition file.

Creates the binary definition file bdfile. By
default, the creation of a binary definition
file is suppressed.

Defines a globally defined constant micro
mname, as follows:

micdef : . = mnamel=[string]]

mname must be a valid identifier. If the =
character is specified, it must immediately
follow mname. The string that immediately
follows the = character, if any, is associated
with mname. If you do not specify string,
mname will be associated with an empty
string.

If mname was defined as a micro by use of a
binary definition file, the mname specified
on the command line overrides the mname
defined within the binary definition file; in
that case, CAL issues a note-level diagnostic
message.

Assembly output symbol file is stored in
symfile. symfile is used by the system
debuggers. By default, the output symbol
file is suppressed.

If you specify the same file for both the —0
and —g options, and the last assembler
segment does not contain a module (that is,
it contains only the global part of the
segment), CAL will not generate a
corresponding symbol table for that
assembler segment. For detailed
information about segments, modules, and
global parts, see section 3, page 33.

Cray Research, Inc.

13

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

-G Forces all symbols to symfile if the —g option
is used. Usually, nonreferenced symbols are
not included.

—Ccpu Generates code for the CPU specified. By
default, code is generated for the machine
specified by the TARGET environment
variable. Ifthe TARGET environment is not
set, code is generated for the characteristics
of the host machine. cpu has one of the
following syntaxes:

cpu : . =primary{", " [charac]}
or
cpu =", "[characl{", " [characl}

primary primary can be one of the
following Cray Research systems:

cray-c90 CRAY C90 series
cray-j90 CRAY J90 series
cray-ts CRAY T90 series
cray-ymp CRAY Y-MP series

charac Specifies the features of the
primary computer.

Cray PVP systems permit you to
specify the logical and numeric
traits shown in Table 1.

14 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

UNICOS System Information [2]

SR-3108 9.1

Table 1. Logical and numeric traits

Traits Description

Logical

avl Additional vector logical

noavl No additional vector logical

bdm Bidirectional memory

nobdm No bidirectional memory

brmm Bit matrix multiply (BMM), only on
machines supporting BMM hardware.

nobmm No bit matrix multiply

cigs Compressed index and gather/scatter

noci gs No compressed index and gather/scatter

cori Control operand range interrupts

nocor i No control operand range interrupts

ema Extended memory addressing

noema No extended memory addressing

hpm Hardware performance monitor

nohpm No hardware performance monitor

i eeef CRAY T90 system with IEEE
floating-point hardware

pc Programmable clock

nopc No programmable clock

readvl Read vector length

nor eadvl Do not read vector length

statrg Status register

nostatrg No status register

vpop Vector pop count

novpop No vector pop count

T The i eee characteristic can be used to specify that code be

generated to run on a CRAY T90 system with IEEE
floating-point hardware; however, generating code that

runs on a Cray PVP system that uses Cray floating-point

arithmetic from a CRAY T90 system with IEEE
floating-point hardware is not supported.

Cray Research, Inc.

15

UNICOS System Information [2] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Table 1. Logical and numeric traits

(continued)
Traits Description
vrecur Vector recursion
novr ecur No vector recursion
Numeric
bankbusy=nft Bank busy time (in clock periods)
banks=nf¥ Number of memory banks
clockti mentt Clock time (in picoseconds)
i buf si ze=ntt Instruction buffer size (in words)

mensi ze=ntt
menspeed=ntf
nuncl str=nf¥f

nuncpus=ntt

Memory size (in words)
Memory speed (in clock periods)
Number of cluster registers
Number of CPUs

—h

—H

—i nlist

—| options

Enables all list pseudo instructions
regardless of the location field name.

Disables all list pseudo instructions
regardless of the location field name.

Restricts list pseudo processing to those
pseudo instructions whose location field
names are given in nlist. The names
specified by nlist can take one of the
following forms:

» List of names separated by a comma

» List of names enclosed in double
quotation marks and separated by a
comma and/or one or more spaces

Specifies a list of options. You can specify a
list of more than one option without
intervening blanks. You cannot specify
conflicting options (for example, the same
character in uppercase and lowercase) in the
same —| list. For valid options, see Table 2.

Tt n represents an unsigned decimal number

16 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

UNICOS System Information [2]

SR-3108 9.1

Table 2. List options

Options Description

b Enables macro, opdef, dup, and echo expansion
(binary only)

Bf Disables macro, opdef, dup, and echo expansion
(binary only)

c Enables macro, opdef, dup, and echo expansion
(conditionals)

Ct Disables macro, opdef, dup, and echo expansion
(conditionals)

d Enables dup and echo expansion

Df Disables dup and echo expansion

et Enables edited statement listing

E Disables edited statement listing

I Enables listing control pseudo instructions

Lt Disables listing control pseudo instructions

m Enables macro and opdef expansions (binary
only)

Mf Disables macro and opdef expansions (binary
only)

nt Enables nonreferenced local symbols included
in the cross-reference

N Disables nonreferenced local symbols included
in the cross-reference

p Enables macro, opdef, dup, and echo expansion
of pre-edited lines

Pf Disables macro, opdef, dup, and echo expansion

of pre-edited lines

T Denotes default option

Cray Research, Inc.

17

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

18

Table 2. List options

(continued)

Options

Description

st
S
t
T
xf
X

Enables source statement listing
Disables source statement listing
Enables text source statement listing
Disables text source statement listing
Enables cross-reference listing

Disables cross-reference listing

—m mlevel

—Nn number

Specifies the level of the output listing, the
message listing, and the standard error file.
mlevel can be corment , not e, cauti on,
war ni ng, or error.

If you specify the —moption, it overrides all
MLEVEL pseudo instructions. By default, the
level is war ni ng, and the MLEVEL pseudo
instruction controls the message level
during assembly.

Enables flagging of possible CRAY C90
series and CRAY J90 series bidirectional
memory conflicts. Requires —mto be set to
comrent , not e, or caut i on.

Maximum number of messages that will be
inserted into the output listing, the message
listing, and the standard error file. number
must be 0 or greater; the default is 100.

Enables the new statement format. By
default, the old format is used when
targeting for a CRAY Y-MP system,;
otherwise, the new format is used.
Statement format reverts to the format that
is specified on the invocation statement at
the end of each assembler segment.

T Denotes default option

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual UNICOS System Information [2]

Interactive

assembly
2.2

SR-3108 9.1

-F Disables the new statement format. By
default, the old format is used when
targeting for a CRAY Y-MP system,;
otherwise, the new format is used.
Statement format reverts to the format
specified on the invocation statement at the
end of each assembler segment.

= Enables editing; the default is enabled.
Editing status reverts to the status specified
on the invocation statement at the end of
each assembler segment.

-J Disables editing; the default is enabled.
Editing status reverts to the status specified
on the invocation statement at the end of
each assembler segment.

-U Forces the conversion of source code to
uppercase. Quoted strings are embedded
micros and are protected. Both new and old
format statement types are supported.

-V Causes the version number of the assembler
being run and other statistical information
(comment-level diagnostic messages) to be
written to the standard error file.

file File that will be assembled; all options must
precede the file name argument.

To assemble and execute a CAL program interactively, enter the
following commands:

as myfile. s
segl dr myfile. 0

a. out

Cray Research, Inc. 19

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The UNICOS

environment
2.3

LPP environment
variable
2.3.1

20

The commands are described as follows:

Command Description

as Assembles file myfile. s and creates file
myfile. 0

segl dr Links and loads the assembled program found
in myfile. 0 and creates the executable file
a. out

a. out Executes the executable file a. out

For a description of these and other commands, see the UNICOS
User Commands Reference Manual, publication SR-2011.

The following subsections describe aspects of the UNICOS
environment. How the environment is set depends on the type
of shell being used.

The CAL assembler is affected by the LPP environment variable
in the UNICOS environment. The LPP environment variable
sets the number of lines per page for output listings (page
length). By default, the number of lines per page is 55.

To set the LPP environment variable and assemble multiple
source files when using the C shell, enter the following
commands:

setenv LPP n
as filenamea. s

as filenameb. s

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual UNICOS System Information [2]

To set the LPP environment variable and assemble a source file
with a single command line when using the standard shell, enter
the following command:

LPP=n as filenamex. s

If you specify the LPP shell variable on the same line as the
as(1) command line, the number of lines per page assigned by
the LPP shell variable is restricted to that particular as
instruction.

To set the LPP environment variable and assemble multiple
source files when using the standard shell, enter the following
commands:

LPP=n
export LPP
as filenamea. s

as filenameb. s

If you specify the LPP shell variable as a separate entry and then
export it, all assemblies that follow use the page length specified
by that LPP shell variable for output and message listings.

In the preceding examples, n is a decimal number in a valid
range of 4 through 999 (the default is 55) that represents the
page length used in output listings and filenamea, filenameb...
represent the names of the source files being assembled.

Note: If n is outside of the valid range, the page length is set
to the default.

SR-3108 9.1 Cray Research, Inc. 21

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

TMPDI Rshell variable
2.3.2

22

In the following example, the number of lines per page in the
output listings for srca. s and sr cb. s is 45:

LPP=45
export LPP
as srca.s
as srch.s

In the following example, the page length for sr cd. s is 45.
However, the page length for sr ce. s reverts to 64 because the
second LPP shell variable is restricted to the assembly of
srcd. s:

LPP=64
export LPP
LPP=45 as srcd.s

as srce.s

The TMPDI R shell variable specifies a directory used by the
assembler for its temporary file. If the directory is not specified
or is specified incorrectly, the assembler uses the system default.
The default is site-specific.

To set the TMPDI R environment variable and assemble a source
file when using the C shell, enter the following commands:

setenv TWMPDI R dir_name
as filenamea. s

To set the TMPDI R environment variable and assemble a source
file with a single command line when using the standard shell,
enter the following command:

TWMPDI R=p as filenamex. s

If you specify the TMPDI R shell variable on the same line as the
as(1) command line, the temporary directory assigned by the
TMPDI R shell variable affects only that particular as instruction.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual UNICOS System Information [2]

To set the TMPDI R environment variable and assemble multiple
source files when using the standard shell, enter the following
commands:

TMPDI R=p
export TMPDI R
as filenamea. s

as filenameb. s

If you specify the TMPDI R environment variable as a separate
entry and then export it, all assemblies that follow use the
temporary directory specified by that TMPDI R shell variable for
temporary files.

In the preceding example, p specifies the directory path used for
the assembler’s temporary file and the filenamea, filenameb...
variables represent the names of the UNICOS files that are
being assembled.

In the following example, / t np is the directory that CAL uses for
its temporary file:

TMPDI R=/t np
export TMPDI R
as srca.s

as srch.s

SR-3108 9.1 Cray Research, Inc. 23

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

MSG_FORMAT error
message format
2.3.3

TARGET shell variable
2.3.4

24

In the following example, the temporary directory used for
srcd. s is the current working directory (.). The temporary
directory for sr ce. s, however, reverts to/ usr/t np, which is
used because the second TMPDI R environment variable is
associated only with the assembly of sr cd. s:

TMPDI R=/ usr/t np
export TMPDI R
TMPDI R=. as srcd.s

as srce.s

The MSG_FORMAT environment variable controls the format of
error messages received from programs that use the

cat nsgf nt (3) message formatting routine. For more
information, see the expl ai n(1) man page.

The TARGET environment variable determines the
characteristics of the machine the code is generated for. To
initialize the TARGET environment variable in the C shell, enter
the following:

setenv TARGET cpuname

To initialize the TARGET environment variable in the standard
shell, enter the following:

export TARGET

The format to set up or change the TARGET environment variable
in the standard shell is as follows:

TARGET=[cpuname] {, [charac] }

If the TARGET environment variable is not set, code is generated
using the characteristics of the host machine. The options for
cpuname and charac may be found in subsection 2.1, page 12.
For more information, see the t ar get (1) man page.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual UNICOS System Information [2]

Binary definition

files
2.4

SR-3108 9.1

Note: Targeting a CRAY T90 with IEEE floating-point
hardware from any other Cray PVP system is supported,
however; targeting a Cray PVP system that uses Cray
floating-point arithmetic from a CRAY T90 with IEEE
floating-point hardware is not supported.

CAL allows the assembler source program access to previously
assembled lines or sequences of code. These preassembled
sequences are stored in files that are called binary definition
files. Binary definition files are analogous to libraries and are
one of the following types:

» System-defined
» User-defined

The system-defined binary definition fileis / | i b/ asdef. CAL
accesses the system-defined binary definition file automatically
unless the assembler is directed otherwise. Binary definition
files contain commonly used symbols, macros, opdefs, opsyns,
and micros. For information about available macros and opdefs,
see the UNICOS Macros and Opdefs Reference Manual,
publication SR—-2403.

Note: System- and user-defined binary definition files are
identical in all respects. Both types of files are created and
used in exactly the same manner. In this manual, they are
treated as separate entities to encourage you to define binary
definition files that meet your particular programming
requirements.

You can create user-defined binary definition files by using
either of the following methods:

+ Copying the system-defined binary definition files and then
modifying the new file either by adding new definitions or by
redefining existing definitions.

« Disabling the recognition of system-defined binary definition
files and accumulating the defined sequences entirely from an
assembler source program. For more information, see
subsection 2.1, page 12.

Cray Research, Inc. 25

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Defining a binary
definition file
2.4.1

26

You can specify more than one binary definition file with each
assembly. If more than one binary definition file is specified, the
files are processed from left to right in the order specified by the
—b option.

Lines or sequences of code assembled and stored in a binary
definition file, can be accessed without reassembly. This means
accessing a binary definition file directly saves assembler time.

The following subsections describe defining, creating, and using
binary definition files.

Only certain types of lines or sequences of code are permitted in
a binary definition file. Binary definition files are always
created from the global part of program segments and from any
currently accessed binary definition files. Typically, binary
definition files are created from source programs that include
one segment that contains a global part, but has no program
module (see Figure 4, page 28).

Additions can be made to binary definition files from assembler
source programs that include program modules, however, not all
lines or sequences of code in the global part are added.

Note: Under no circumstance is any line or sequence of code
added to a binary definition file from an assembler program
module. All additions to binary definition files come from the
global part of the segment.

Binary definition files are composed of lines or sequences of code
classified as follows:

» Symbols

« Macros

» Opdefs

» Opsyns

* Micros

Each line or sequence of code added to a binary definition file

must be in one of these classes and must satisfy the
requirements for that particular class.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual UNICOS System Information [2]

Symbols
2.4.1.1

Macros
2.4.1.2

Opdefs
2.4.1.3

Opsyns
2.4.1.4

SR-3108 9.1

CAL accumulates the symbols to be included in a new binary
definition file from all currently accessed binary definition files
and from all of the global parts of program segments that fit the
following requirements:

» Symbols cannot be redefinable.

To be included in a binary definition file, a symbol must be
defined with the = (equates) pseudo instruction. Symbols
defined with the SET or M CSI ZE pseudo instruction are
redefinable; therefore, they are not included in a binary
definition file.

» Symbols cannot be preceded by %%

This exclusion applies to symbols that are created by the
LOCAL and = pseudo instructions.

CAL identifies all of the symbols in the global part of program
segments that meet the preceding requirements and includes
them in the creation of a binary definition file. In Figure 4, page
28, SYML, SYM3, and SYM4 meet the requirements and are
included. SYM? (defined in the module), SYMb (redefinable), and
WWEYM5 (begins with 989 do not meet the requirements and are
not included.

CAL accumulates the macros to be included in a new binary
definition file from all currently accessed binary definition files
and from all of the global parts of segments within a source
program.

CAL accumulates opdefs (operation definitions) to be included in
a new binary definition file from all currently accessed binary
definition files and from all of the global parts of segments
within a source program.

CAL accumulates opsyns (operation synonyms) to be included in
a new binary definition file from all currently accessed binary
definition files and from all of the global parts of segments
within a source program.

Cray Research, Inc. 27

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Micros
2.4.1.5

28

CAL accumulates micros to be included in a new binary
definition file from all currently accessed binary definition files
and from all of the global parts of segments within source
program. Only micros that cannot be redefined are included in a
binary definition file. A micro must be defined using the CM CRO
pseudo instruction to be included in a binary definition file.

Program
Segment A
Global A
SYmL = 1
Module A
SYme = 2
Segment B
Global B
SYMB = 2
Module B
Segment C
Global C
Syma = 4
SYMb SET 5
%EYNM = 1

Figure 4. CAL program structure

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual UNICOS System Information [2]

Creating binary
definition files
2.4.2

SR-3108 9.1

You can create your own binary definition files containing
information related to both the UNICOS operating system and
Cray Research hardware. Keep in mind that system
dependencies included in these binary definition files may not be
portable between UNICOS versions or different hardware
platforms.

To create binary definition files under UNICOS, include the —b
and —C options on the as(1) command line. The —b option
accepts a list of files separated by commas or a list of files
enclosed in double quotation marks and separated by spaces or
commas as arguments.

In the following example, the default system-defined binary
definition file / | i b/ asdef and user-defined binary definition
files our def fi | e and nydef fi | e are included along with the
accumulated symbols, macros, opdefs, opsyns, and micros from
the global parts of the program segments from the current
source program (pr 0g. S) being assembled. The new binary
definition file called mynewf i | e is defined and created by
including the —c option.

as —b ourdeffile,nydeffile —c nynewfile prog.s

In CAL, the default binary definition file (/ | i b/ asdef) is
available unless suppressed by including the —B option. If not
suppressed, / | i b/ asdef is the first binary definition file read.
Any other binary definition files specified following the —b option
are processed in the order specified. The following command line
suppresses / | i b/ asdef and makes nynewfi | e the only
available binary definition file:

as -B —-b nynewfile prog.s

The following command line suppresses / | i b/ asdef and takes
only the accumulated symbols, macros, opdefs, opsyns, and
micros from the global parts of the program segments from the
current source program being assembled and enters them into
the binary definition file nynewfi | e:

as —-B —c nynewfile prog.s

To use the system-defined binary definition file and specify the
user-defined binary definition file created using the preceding
options, use the following command line in subsequent
assemblies:

as —b nynewfile prog.s

Cray Research, Inc. 29

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Using binary
definitions files
2.4.3

CPU compatibility
checking
2.4.3.1

Multiple references to a
definition
2.4.3.2

Symbols
2.4.3.2.1

30

Binary definition files provide access to previously assembled
lines or sequences of code. To access binary definition files,
include the —b option on the as(1) command line. When binary
definition files are accessed, they are checked for the following:

» CPU compatibility

e Multiple references to the same definition

CAL permits access to any previously defined file with one
restriction. Binary definition files are marked with the CPU
type for which they were created. Binary definition files created
on one Cray PVP system is not necessarily compatible with all
Cray PVP systems. If a binary definition file is not compatible
with the system you are using, the binary definition file is not
accepted, and the following message is issued:

I nconpati bl e version of binary definition file ‘ile

This check ensures that the machine on which the binary
definition file was created is compatible with the program trying
to use it. Some CAL pseudo instructions have restricted use
based on hardware and software requirements. The binary
definition file compatibility check prevents the mixing of binary
definition files and ensures that hardware and software
restrictions are not violated.

CAL checks for multiple references to definition names for
macros and opsyns, location field names for symbols and micros,
and syntax for opdefs. The following subsections describe how
multiple references to a definition are resolved.

If a symbol is defined in more than one binary definition file, the
definitions are compared. If the definitions are identical, CAL
disregards the duplicates and makes one entry for the symbol
from the binary definition files. If a symbol is defined more than
once and the definitions are not identical, CAL uses the last
definition associated with the location field name and issues the
following diagnostic message:

Synbol ‘name’ is redefined in file file

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual UNICOS System Information [2]

Macros
2.4.3.2.2

If a macro with the same functional name is defined in more
than one binary definition file, the definitions are compared. If
the definitions associated with the macro’s functional name are
identical character by character, CAL disregards the duplicate
definition and makes one entry for the macro from the binary
definition files. If the functional name of the macro is used more
than once, and the definitions associated with the functional
name are not identical character by character, CAL uses the
definition associated with the last reference to the functional
name and issues the following diagnostic message:

Macro ‘name’ in file ‘file’ repl aces previous definition

Opdefs
2.4.3.2.3

If a macro is defined with the same functional name as a pseudo
instruction, the macro replaces the pseudo instruction and CAL
issues the same message as shown above.

If an opdef with the same syntax is defined in more than one
binary definition file, the definitions of the opdefs are compared.
If the definitions of the two opdefs are exactly the same, CAL
disregards the duplicate definition and makes one entry for the
opdef from the binary definition files. If the same syntax
appears more than once and the definitions are not exactly the
same, the syntax associated with the last reference to the opdef
is used as its definition and CAL issues the following diagnostic
message:

Opdef ‘name’ in file file’ repl aces previous definition

Opsyn
24324

If an opdef'is defined with the same syntax as a machine
instruction, the opdef replaces the machine instruction and CAL
issues the message shown above.

If an opsyn with the same functional name is defined in more
than one binary definition file, the definitions are compared. If
the definitions are identical, CAL disregards the duplicate
definition and makes one entry for the opsyn from the binary
definition files. If the functional name for an opsyn is used more
than once and the definitions are not identical, CAL uses the
definition associated with the last reference to the opsyn name
and issues the following diagnostic message:

Qpsyn ‘name’ in file file’ repl aces previous definition

SR-3108 9.1

Cray Research, Inc. 31

UNICOS System Information [2]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Micros
2.4.3.2.5

If an opsyn is defined with the same name as a pseudo
instruction, the opsyn replaces the pseudo instruction and CAL
issues the message as shown above. Pseudo instructions have
an internal code that permits CAL to identify them when they
are encountered. When an opsyn is used to redefine an existing
pseudo instruction, CAL copies the predefined internal code of
that pseudo instruction and uses it for identification in the
binary definition file.

If a micro with the same location field name is defined in more
than one binary definition file, the micro strings associated with
the location field names are compared. If the strings are
identical, CAL disregards the duplicate definition and makes one
entry for the micro from the binary definition files. If the micro
is used more than once and the strings associated with the micro
names are not exactly identical, CAL uses the string associated
with the last reference to the micro name and issues the
following diagnostic message:

Mcro name’ in file “ile’ repl aces previous definition

32

Cray Research, Inc. SR-3108 9.1

