The CAL Program [3]

Program segment
3.1

Program module
3.1.1

SR-3108 9.1

This section describes the organization of a CAL program and
how each component functions within the program. A CAL
program can contain any or all of the following components:

* Program segment
* Source statement
« Statement editing
¢+ Instructions

» Micros

» Sections

The following subsections describe each of these components.

A CAL program consists of zero or more segments. A CAL
program with zero segments consists of one or more empty files.
A file that contains one blank line is considered a segment. For
example, CAL considers a program with an | DENT/ END
sequence that is followed by a blank line to contain two
segments. Ordinarily, each segment consists of global
definitions, a program module, or a combination of global
definitions and a program module. Figure 5, page 34, illustrates
the organization of a CAL program.

A program module is the main body of code and resides between
the | DENT and END pseudo instructions. (For more information
on pseudo instructions, see subsections 3.4.1.2, page 47, and
section 5, page 117.) The | DENT pseudo instruction marks the
beginning of a program module. The END pseudo instruction
marks the end of a module and always terminates a segment.
Any definitions between these two pseudo instructions apply
only to the program module in which the definition resides.

Cray Research, Inc. 33

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Program
Segment-1
Global definitions — 1
Program module — 1
Segment - 2
Global definitions — 2
Program module — 2
[J
[J
[]
Segment—n
Global definitions — n
Program module — n

Figure 5. CAL program organization

34 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Global definitions
3.1.2

SR-3108 9.1

Definitions that occur before the first | DENT pseudo instruction
or between the END pseudo instruction that terminates one
program module and the | DENT that begins the next program
module are global definitions. They can be referenced without
redefinition from within any of the program segments that follow
the definition.

CAL recognizes global definitions to be sequences of instructions
that do not generate code. They define and assign values to
symbols, macros, opdef instructions, and micros. (For more
information on opdefs, macros, and micros, see section 5,

page 117.)

Redefinable micros, redefinable symbols, and symbols of the
form %%; where x is 0 or more identifier-characters are
exceptions. Although they can occur in such sequences, they are
local to the segment in which they are defined, are not known to
the assembler after the next END pseudo instruction (end of the
current segment) is encountered, and they are not included in
the cross-reference listing. Symbols defined within the global
definitions area cannot be qualified (see subsection 4.3.1,

page 70).

Cray Research, Inc. 35

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following example illustrates global definitions:

SYML

SYme
WWEYM3
WEYM

SYme
WWEYM3

= 1

SET 2

= 3

SET 4

| DENT TEST1
S1 SYML

S2 Syme

S3 WSYM3
S4 WEYML
END

SET 3

= 5

| DENT TEST2
S1 SYML

S2 Syme
S3 WEYMB
S4 WEYMA
END

| DENT TEST3
S1 SYML

S2 SYM?

S3 WEYM
END

; Begin segnment 1 gl oba

;. SYML cannot be redefined

; SYM2 equals 2 for this nodule
; Gone at the end of the nodul e
;. Gone at the end of the nodul e

; Beginning of nodule 1

; Register S1 gets 1

; Register S2 gets 2

; Register S3 gets 3

; Register S4 gets 4

; End of segnment 1 and nodul e TEST 1

; Begi nning of segnent 2

; A obal definitions

; Begi nning of nodul e TEST 2

; Register Sl gets 1

; Register S2 gets 3

; Register S3 gets 5

; Error: not defined

; End of segnent 2 and nodul e TEST 2

; Begi nning of segnent 3 and nodul e TEST 3
; Register Sl gets 1

; EBError: not defined

. Error: not defined

; End of segnment 3 and nodul e TEST 3

Source statement

3.2

36

A CAL program consists of a sequence of source statements. A

source statement can be an instruction or a comment. (The
assembler lists comments, but they have no effect on the
executable program.)

Formal parameters, symbols, names, pseudo instructions, and
macro names are case-sensitive. To be recognized, subsequent

references to a previously defined formal parameter, symbol,
name, or functional unit must match the original definition
character-for-character and case-for-case (uppercase or
lowercase).

Cray Research, Inc.

SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

The following are examples of case-sensitivity:

Definition Reference Comment

HERE HERE Recognized
HERE Her e Not recognized
PARAM par am Not recognized

The following rules govern the use of uppercase and lowercase
characters in CAL statements:

« Pseudo instructions and mnemonics are case-sensitive; they
can be uppercase or lowercase, but not mixed case.

» Register names are case-insensitive; they can be uppercase,
lowercase, or mixed case.

« Macro names, opdef mnemonics, symbol names, and other
names are case-sensitive; they are interpreted as coded.

Although CAL source statements are essentially free field,
formatting conventions provide more uniform and readable
listings. CAL supports two formatting conventions, the new
format and the old format. A blank character is used to separate
fields in the old format. In the new format, you can use either a
blank or a tab to separate fields.

New format The new format is specified by either the FORMAT pseudo

3.2.1 instruction or the —f parameter of the CAL invocation
statement. For more information on the —f parameter, see
subsection 2.1, page 12.

A source statement that uses the new format consists of the
following fields:

» Location
* Result
» Operand

« Comment

SR-3108 9.1 Cray Research, Inc. 37

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Location field
3.2.1.1

Result field
3.2.1.2

38

If the new format is specified, use the following coding
conventions:

Beginning column Field

1 Blank, tab, or asterisk

1 Location field entry

9 Blank or tab

10 Result field entry

19 Blank or tab

20 Operand field entry

34 Blank or tab

35 Semicolon (indicates comment field)
36 Blank

37 Beginning of comment field

The content of the location field depends on the requirements of
the result and/or operand fields of each particular source
statement. The location field of all machine instructions can
optionally contain a symbol. If the location field of a machine
instruction contains a symbol, the symbol is set equal to the
current value of the location counter.

When an instruction uses the location field, it begins in column 1
(new format) and is terminated by a blank or tab character. The
location field also can contain an asterisk (*) to identify a
comment line.

The content of the result field depends on the particular
instruction. The result field of pseudo instructions and macro
instructions must match existing functionals. Machine or opdef
instructions can contain one, two, or three subfields.

The subfield can be empty, contain expressions, or consist of
register designators or operators. (Expressions, register
designators, and operators are described in section 4, page 61.)
The result field begins with the first nonblank or nontab
character following a location field that is not empty and usually

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Operand field

3.2.1.3

Comment field

3.2.14

ends with one or more blanks, one or more tabs, or a semicolon.
If column 1 is empty, the result field can begin in column 2 or
subsequent columns. A blank result field following a location
field produces a listing message.

Before the operand field can be specified, it must be preceded by
a result field. For functionals (pseudo instructions and macro
names), the operand field depends on the functional specified in
the result field.

If the instruction is a symbolic machine instruction, the operand
field contains the operation being performed. However, it can
contain other information, depending on the particular
instruction. The syntax of the operand field is identical to that
of the result field. Machine or opdef instructions can contain
one, two, or three subfields. A subfield can be empty, contain
zero or more expressions, or consist of register designators and
operators.

Usually, the operand field begins with the first nonblank or
nontab character following a result field that is not empty and
ends with one or more blank characters, one or more tab
characters, or a semicolon.

The comment field contains an explanation of the source
statement and does not generate code. The comment field is
optional and can be specified with an asterisk or a semicolon. A
semicolon comment can be in any column, including column 1. If
an asterisk is used to indicate a comment, it must appear in
column 1. Generally, a comment that begins in column 1 is
specified by using an asterisk and a comment that begins in any
other column is specified by using a semicolon. If a semicolon is
specified with nothing preceding it, the line is treated as a null
instruction followed by a comment. Usually, comment fields are
not edited. For more information about editing comment fields,
see subsection 3.3, page 41.

The following example illustrates the use of the comment field:

*Asterisk in colum 1

i dent

end

testl

testl

denot es comment |ine
; Sem col on begi ns conment

SR-3108 9.1

Cray Research, Inc. 39

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Old format
3.2.2

Location field
3.2.2.1

40

The old format is specified by either the FORVAT pseudo
instruction or the —F parameter of the CAL invocation
statement. For more information on the —F parameter, see
subsection 2.1, page 12.

A source statement that uses the old format consists of the
following fields:

» Location

* Result

» Operand

« Comment

If the old format is specified, use the following coding
conventions:

Beginning

column Field

1 Asterisk, or comma

1 Location field entry, left-justified
9 Blank

10 Result field entry, left-justified
19 Blank

20 Operand field entry, left-justified
34 Blank

35 Beginning of comment field

The content of the location field depends on the requirements of
the result and/or operand fields of each particular source
statement. The location field of all machine instructions can
optionally contain a symbol. If the location field of a machine
instruction contains a symbol, the symbol is set equal to the
current value of the location counter.

If the location field contains an asterisk (in column 1 only), that
line is identified as a comment line. The location field is not
used by all instructions. It begins in column 1 or 2 (old format)
and is terminated by a blank character.

A comma can be used for a continuation line. For more
information, see subsection 3.3, page 41.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Result field
3.2.2.2

Operand field
3.2.2.3

Comment field
3.2.2.4

Statement editing
3.3

SR-3108 9.1

The result field begins with the first nonblank character
following the location field and ends with one or more blanks or
the end of the statement. If the location field terminates before
column 33, the result field must begin before column 35;
otherwise, the field is considered empty. If the location field
extends beyond column 32, however, the result field must begin
after not more than one blank separator and can begin after
column 35.

The operand field begins with the first nonblank character
following a result field that is not empty and ends with one or
more blanks or the end of the statement. If the result field
terminates before column 33, the operand field must begin
before column 35; otherwise, the field is considered empty. If the
result field extends beyond column 32, however, the operand
field must begin after not more than one blank separator and
can begin after column 35.

The comment field is optional and begins with the first nonblank
character following the operand field or, if the operand field is
empty, does not begin before column 35. If the result field
extends beyond column 32 and no operand entry is provided, two
or more blanks must precede the comment field. The comment
field can be the only field supplied in a statement. If editing is
enabled, comments are edited. For more information about
editing, see subsection 3.3, page 41.

The following example illustrates the use of the comment field:

| DENT
* An asterisk coment must begin in colum |.

CAL processes source statements sequentially from the source
file. Statement editing is a form of preprocessing in which CAL
deletes or replaces characters before processing the statement as
source code.

Cray Research, Inc. 41

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

42

The assembler performs the following types of statement editing:
« Concatenation

The assembler recursively deletes all underscore characters
and combines the character that preceded the underscore with
the character following the underscore.

* Micro substitution

The assembler replaces a micro name with a predefined
character string. The character string replacement is not
edited a second time.

A macro or opdef definition is not immediately interpreted but is
saved and interpreted each time it is called. Before interpreting
a statement, CAL performs editing operations. CAL does not
perform micro substitution or concatenate lines when editing is
disabled. (Editing is disabled using the EDI T pseudo instruction
or by including the —J parameter in the invocation line of the
assembler.)

The edit invocation statement option does not affect appending,
continuation, and the processing of comments.

The following special characters signal micro substitution,
concatenation, append, continuation, and comments:

Character Edit Description

“name” Yes Micro; affected by the EDI T pseudo
instruction on the invocation
statement option (new or old format).

Yes Concatenate; (underscore) affected by
the EDI T pseudo instruction on the
invocation statement option (new or
old format).

A No Append; (circumflex) unaffected by
the EDI T pseudo instruction on the
invocation statement option (new
format).

, No Continuation line; (comma)
unaffected by the EDI T pseudo
instruction on the invocation
statement option (old format).

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Micro substitution
3.3.1

SR-3108 9.1

Character Edit Description

* No Comment line; (asterisk) unaffected
by the EDI T pseudo instruction on the
invocation statement option (new or
old format).

X No Comment line; (semicolon) unaffected
by the EDI T pseudo instruction on the
invocation statement option (new or
old format).

Note: When CAL edits “ $CWNT” , “$M C’, “ $CNC’, or

“$APP” | the string name and the pair of double quotation
marks (* ") is replaced by a previously defined string. For
example, when CAL edits “ $CMNT” , a semicolon is
substituted for the micro name $CVNT and the double
quotation marks (“* "). After the substitution occurs, the
semicolon is not edited again and editing continues on the
line. Using the predefined “ $CMNT” micro permits a comment
to be edited. For example,

“$CWNT” Cray Research, Inc. “$DATE’ - “$TI M’
is edited as follows:
; Cray Research, Inc. 12/31/85 — 8:15:45

The characters to the right of the substituted character are
shifted six positions to the left after editing, because the
character string substituted for “ $CMNT” (;) is six characters
shorter than the micro name.

You can assign a micro name to a character string. You can refer
to that character string in subsequent statements by its micro
name. The CAL assembler searches for quotation marks (") that
delimit micro names. The first quotation mark indicates the
beginning of a micro name; the second quotation mark identifies
the end of a micro name. Before a statement is interpreted, CAL
replaces the micro name with the character string that
comprises the micro. For more information on micros, see
subsection 3.5, page 48.

Cray Research, Inc. 43

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Concatenate
3.3.2

Append
3.3.3

Continuation
3.34

Comment
3.3.5

44

The concatenate feature combines characters connected by the
underscore (_) character. CAL examines each line for the
underscore character and deletes each occurrence of the
underscore. The two adjoining columns are linked before the
statement is interpreted. The concatenate symbol can be in any
column and tells the assembler to concatenate the characters
following the last underscore to the character preceding the first
underscore.

The append feature combines source statements that continue
for more than one line. It is available only when the new format
is specified. The exact number of lines that CAL can append
depends on memory limitations.

The append symbol is a circumflex (*) and appends one line to
another. It can be used in any column on any line. If more than
one circumflex exists, the first instance is used.

When the current line contains a circumflex, CAL appends the
first nonblank or nontab character and all characters that follow
from the next line to the current line. The characters are
appended at the position in the current line that contains the
circumflex; the circumflex and any characters that follow it on
the current line are replaced.

A comma in column 1 indicates a continuation of the previous
line. Columns 2 through 72 become a continuation of the
previous line. Continuation is permitted only when the old
format is specified.

A semicolon (;) in any column (new format only) or an asterisk
(*) in column 1 indicates a comment line. The assembler lists
comment lines, but they have no effect on the program. When a
semicolon or an asterisk has an editing symbol after it, the
symbol is treated as part of the comment and is not used. In the
new format, comment statements with semicolons or asterisks
are not appended.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Note: Asterisk comment statements are not included in
macro definitions. To include a comment line in a macro
definition, enter an underscore in column 1 of the comment
line followed by an asterisk and then the comment. Because
editing is disabled at definition time, the statement is
inserted. If editing is enabled at expansion time, the
underscore is edited out and the statement is treated as a
comment.

The following example illustrates the use of comment statements
in a macro:

MACRO

EXAMPLE
* This comment is not included in the definition.
_* This comrent is included in the definition.
SYM = 1
EXAMPLE ENDM

The macro in the preceding example is expanded as follows:

LI ST LI S, MAC
EXAVPLE ; Macro cal |
* This coment is included in the definition.
SYM = 1
Actual statements and CAL statements can be divided into two categories: actual and
edited statements edited. An actual statement is the unedited version of a
3.3.6 statement that includes any appending of lines. It contains all of

the editing symbols rather than the results of the editing. If an
actual statement has a corresponding edited statement, further
processing is done on the edited statement. The following
examples show actual and edited statements.

SR-3108 9.1 Cray Research, Inc. 45

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

This following example shows an actual statement:

LCC MCALL

ARGL, "
ARG2, "
ARG3, *
ARA, "
ARG, #

An actual statement can have a corresponding edited statement.
The edited statement displays the statement without any editing
symbols. The following example shows the edited version of the
actual statement in the preceding example:

LOC MCALL

ARGL, ARG2, ARG3, ARA, ARG

In the following example, the actual statement has no
corresponding edited statement:

ENTER

ARGL, ARG2, ARG3 ; Comment s

Instructions
3.4

Assembler-defined
instructions
3.4.1

46

CAL recognizes two types of instructions:

» Assembler-defined
» User-defined

Assembler-defined instructions include machine and pseudo
instructions. User-defined instructions are defined by the user.

Two types of assembler-defined instructions are available in
CAL:

e Machine instructions

» Pseudo instructions

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Machine instructions
3.4.1.1

Pseudo instructions
3.4.1.2

User-defined
instructions
3.4.2

SR-3108 9.1

Machine instructions manipulate data by performing functions
such as arithmetic operations, memory retrieval and storage,
and transfer of control. Each machine instruction can be
represented symbolically in CAL. The assembler identifies a
machine instruction according to its syntax and generates a
binary machine instruction in object code.

The location field of each instruction can contain an optional
symbol. If an optional symbol is included, it is not redefinable,
has a value equal to the value of the current location counter
and an address attribute of parcel, and its relative attribute is
equal to the relative attribute of the current location counter
(that is, absolute, immobile, or relocatable). For more
information about symbols and expression evaluation, see
section 4, page 61.

Machine instruction syntax is uniquely defined by the contents
of the result field alone or the result and operand fields together.
The optional location field represents the logical memory
location of the instruction.

Each Cray Research system has its own set of machine
instructions. Appendix D, page 359, and appendix E, page 369,
contain tables of these machine instructions. For more detailed
descriptions of the instruction sets for each system, see the
system programmers reference manual for the particular
system.

Pseudo instructions direct the assembler in its task of
interpreting the source statements and generating an object
program. CAL has a large complement of pseudo instructions.
Each pseudo instruction has a unique identifier in the result
field. The contents of the location and operand fields depend on
the pseudo instruction.

Section 5, page 117, describes the use of pseudo instructions and
appendix A, page 189, describes individual pseudo instructions
and their formats.

The CAL assembler lets you identify a sequence of instructions
that will be saved for assembly at a later point in the source
program.

Cray Research, Inc. 47

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Micros
3.5

48

CAL recognizes four types of defined sequences: macro, opdef,
dup, and echo. Defined sequences are classified as either
permanent or temporary.

A permanent-defined sequence (macro or opdef) can be called any
number of times after it has been defined. A temporary-defined
sequence (dup or echo) must be defined before each call.
Permanent-defined sequences are placed in the source program
and assembled when they are called. Temporary-defined
sequences are assembled immediately after they are defined.

Through the use of micros, you can assign a name to a character
string and subsequently refer to the character string by its
name. A reference to a micro results in the character string
being substituted for the name before assembly of the source
statement containing the reference. The CM CRO, M CRO,

CCTM C, and DECM C pseudo instructions (described in
subsection 5.10, page 124) assign the name to the character
string.

Refer to a micro by enclosing the micro name in double quotation
marks (“”) anywhere in a source statement other than within a
comment. If column 72 of a line is exceeded because of a micro
substitution, the assembler creates additional continuation lines.
No replacement occurs if the micro name is unknown or if one of
the quotation marks is omitted.

When a micro is edited, the source statement that contains the
micro is changed. Each substitution produces one of the
following cases:

¢ The length of the micro name and the pair of quotation marks
is the same as the predefined substitute string. When the
micro is edited, the length of the source statement is
unchanged.

* The length of the micro name and the double quotation marks
is greater than the predefined substitute string. When the
string is edited, all characters to the right of the edited string
shift left the number of spaces equal to the difference between
the length of the micro name including the double quotation
marks and the predefined substitute string.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

* The length of the micro name and the double quotation marks

is less than the predefined substitute string. If column 72 of a
line is exceeded because of a micro substitution, the assembler
creates additional continuation lines. Resulting lines are
processed as if they were one statement.

In the following example, the length of the micro name
(including quotation marks) is equal to the length of the
predefined substitute string. A micro named PFXis defined as
EQUAL. A reference to PFXis in the location field of the
statement, as follows:

“PFX’TAG SO

S1 : The location of SO and S1 on the
; source statenment is unchanged

When the line is interpreted, CAL substitutes EQUAL for “ PFX",
producing the following line:

EQUALTAG SO

Sl ; The location of SO and S1 on the
; source statenment i s unchanged

In the following example, the length of the micro name
(including quotation marks) is greater than the length of the
predefined substitute string. A micro named PFXis defined as
LESS. A reference to PFXis in the location field of the
statement, as follows:

“PFX"TAG SO S1 ; Because LESS is one character shorter
; than the micro string name “PFX’, the
; values in the result and operand
; fields are shifted one space to the
;o left.
SR-3108 9.1 Cray Research, Inc. 49

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Before the line is interpreted, CAL substitutes LESS for “ PFX" ,
producing the following line:

LESSTAG SO S1 : Because LESS i s one character shorter
; than the mcro string nane “PFX’, the
; values in the result and operand
; fields are shifted one space to the
;o left.
In the following example, the length of the micro name
(including quotation marks) is less than the length of the
predefined substitute string. A micro named pf x is defined as
great er. A reference to pf X is in the location field of the
following statement:
“pfx” tag SO S1 ; Because greater is two characters

; longer than mcro string name “pfx”,
; the values in the result and operand
; fields are shifted two spaces to the
; right.

Before the line is interpreted, CAL substitutes the predefined
string gr eat er for “ pf x”. Because the predefined substitute
string is 2 characters longer than micro name, the fields to the
right of the substitution are shifted 2 characters to the right,
producing the following statement:

greatertag

SO

S1 ; Because greater is two characters
; longer than the mcro string nane
;o “pfx”, the values in the result and
; operand fields are shifted

50

One or more micro substitutions can occur between the
beginning and ending quotation marks of a micro. These
substitutions create a micro name that is substituted, along with
the surrounding quotation marks, for the corresponding micro
string. Substitutions of this type are embedded micros. An
embedded micro consists of a micro name included between a left
({) and a right brace (}) and is specified as follows:

{ microname}

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

When a micro that contains one or more embedded micros is
encountered, CAL edits all embedded micros within the micro
until a micro name is recognized or until the micro name is
determined to be illegal (undefined or exceeding the maximum
allowable string length of 8 characters). When an illegal micro
is encountered, CAL issues an appropriate message and
terminates the editing of the micro. An embedded micro also can
contain one or more embedded micros.

The following example includes valid and not valid defined
embedded micros

i ndex m cro \ 1\ ; Assigns literal value to index
nul | m cro \\ ; Assigns literal value to nul

array “index” mcro \Some string\
arrayl mcro \Sone string\¥

*
*
*
*
*
*
*
*

“arrayl” — an explicit reference.

Some string — an explicit referencef

“array” “index” — not valid, because “array” was not defi ned.
“array”l — not valid, because “array” was not defined. ¥
“array{index}” — This is an exanpl e of an enbedded micro.

Sonme string — This is an exanple of an enbedded m cro. ¥
“{null}array{index}” — This is an exanple of two enbedded nicros.

Sonme string — This is an exanple of two enbedded m cros. T

¥ Edited by CAL

SR-3108 9.1 Cray Research, Inc. 51

The CAL Program [3] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

CAL places no restrictions on the number of recursions that are
necessary to identify a micro name. The following example
demonstrates the unlimited recursive editing capability of CAL
on embedded micros:

i ndex m cro \ 1\ ; Assigns literal value to index
nul | m cro \\ ; Assigns literal value to null

array“index” micro \Sonme string\
arrayl mcro \Sone string\f¥

*lnu{n{null}u{nul 1}l 1} T}ar{null{null}}ray{ind{null}ex}” — Mcro
* Sone string — Mcrot

CAL issues a warning- or error-level listing message when an
invalid micro name is specified. If a micro name is recognized as
invalid before editing begins, a warning-level message is issued.
If an embedded micro has been edited and the resulting string is
not a valid micro name, an error-level listing message is issued.

¥ Edited by CAL

52 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The CAL Program [3]

The following examples demonstrate how CAL assigns levels to

messages when a micro that is not valid is encountered

identity micro \The substitute string for this exanpl e\
nul | mcro \\ ; Assigns literal value to nul
* “identity{null}” — This is a valid mcro.

*

E I B T

* ok Kk ok ok

The substitute string for this exanple — This is a valid mcro. ¥

The following mcro is invalid, because the nmaxi nrum m cro name
I ength of eight characters is exceeded. Wen a mcro nanme is
identified as being invalid before editing occurs, a warning-|evel
listing message is issued:

“identity9{null}” — This is a not valid mcro.

“identity9 — This is a not valid mcro. ¥t

The following mcro is not valid, because the naxi mum m cro name
l ength of eight characters is exceeded. Wen a mcro nane is
identified as being not valid after editing occurs, an error-1|evel
l'isting nmessage is issued:
“id{null}entity9{null}” — This is a not valid nicro.
“identity9” — This is a not valid mcro. ¥

Sections

3.6

A CAL program module can be divided into blocks of memory
called sections. By dividing a module into sections, you can
conveniently separate sequences of code from data. As the

assembly of a program progresses, you can explicitly or implicitly
assign code to specific sections or reserve areas of a section. The

assembler assigns locations in a section consecutively as it
encounters instructions or data destined for that particular

memory section.

Use the main and literals sections for implicitly assigned code.

CAL maintains a stack of section names assigned by the

SECTI ON pseudo instruction. All sections except stack sections

are passed directly to the loader.

¥ Edited by CAL

SR-3108 9.1 Cray Research, Inc.

53

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Local sections
3.6.1

Main sections
3.6.1.1

Literals section
3.6.1.2

54

Sections can be local or common. A local section is available to
the CAL program module in which it resides. A common section
is available to another CAL program module.

To assign code explicitly to a section, use the SECTI ON pseudo
instruction. You can specify the SECTI ON pseudo instruction for
any Cray PVP system.

A local section is a block of code that is usable only by the
program module in which it resides. CAL uses three types of
local sections:

e Main section
 Literals section
« Sections defined by the SECTI ON pseudo instruction

When a SECTI ON pseudo instruction is used, every SECTI ON
type except COVMON, DYNAM C, TASKCOM and ZEROCOMis local.
For more information about SECTI ON types, see the SECTI ON
pseudo instruction in subsection 5.4, page 120.

The main section is initiated by the | DENT pseudo instruction
and is always the first section in a program module. This section
is used for all local code other than that generated by the
occurrence of a literal reference or code between two SECTI ON
pseudo instructions.

Generally, sections may not have names but must be assigned
types and locations. The default name of the main section is
always empty. The defaults for type and location are M XED and
CM respectively. For more information about the M XED and CM
section names, see the SECTI ON pseudo instruction in subsection
5.4, page 120.

The first use of a literal value in an expression causes the
assembler to store the data item in a literals section. Data is
generated in the literals section implicitly by the occurrence of a
literal. Explicit data generation or memory reservation is not
allowed in the literals section. The assembler supports the
literals section as a constant section. For more information
about literals, see subsection 4.4.3, page 85.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Sections defined by the
SECTI ON pseudo
instruction

3.6.1.3

Common sections
3.6.2

SR-3108 9.1

When a SECTI ON pseudo instruction is used, all code generated
or memory reserved (other than literals) between occurrences of
SECTI ON pseudo instructions is assigned to the designated
section.

Until the first SECTI ON pseudo instruction is specified, the main
section is used. If you specify the ORG pseudo instruction, an
exception to these conditions can occur. Specifying the ORG
pseudo instruction may cause the placement of code or memory
reservations to be different from the currently specified working
section.

The SECTI ON pseudo instruction is recommended for use with all
Cray PVP systems because it has all of the same capabilities as
the BLOCK and COVMON pseudo instructions.

When a section is released, the type and location of the previous
section is used. When the number of sections released is equal
to or greater than the number specified, CAL uses the defaults of
the main section for type (M XED) and location (CM.

A section with the same name, type, and location used in
different areas of a program is recognized as the same section.
For more information, see the SECTI ON pseudo instruction in
appendix A, page 189.

When a SECTI ON pseudo instruction is used with a type of
COMMVON, DYNAM C, ZEROCOM or TASKCOM all code generated
(other than literals) or memory reserved between occurrences of
SECTI ON pseudo instructions is assigned to the designated
common, dynamic, zero common, or task common section. The
SECTI ON pseudo instruction replaces the COMMON pseudo
instruction. You can use SECTI ONin any of the ways that
COMMON was used previously.

At program end, each common section is identified to the loader
by its SECTI ONname and is available for reference by another
program module. If you specify the ORG pseudo instruction, an
exception to these conditions can occur. Specifying the ORG
pseudo instruction may cause the placement of code or memory
reservations to be different from the currently specified working
section.

Cray Research, Inc. 55

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Section stack buffer
3.6.3

56

If a common section is specified, the identifier in the location
field that names the section must be unique within the module
in which it is defined. When a section is assigned a type
(COVMON, DYNAM C, ZEROCOM or TASKCOM that differs from the
type of a previously defined section, it cannot be assigned the
name of a previously defined section within the same module.

CAL maintains a stack buffer that contains a list of the sections
specified. Each time a SECTI ON pseudo instruction names a new
section, CAL adds the name of the section to the list and
identifies the new section as the current section. You also can
use the BLOCK and COVMON pseudo instructions to name sections.

CAL remembers the order in which sections are specified. An
entry is deleted from the list each time a SECTI ON pseudo
instruction contains an asterisk (*). When an entry is deleted,
the name, location, and type of the previously specified section is
enabled.

The first section on the list is the last section that will be deleted
from the list. If the program contains more SECTI ON *
instructions than there are entries, the assembler uses the main
section. (The BLOCK * and COMMON * instructions replace the
current section with the most recent previous section that was
specified by the BLOCK and COVMMON pseudo instructions.)

For each section used in a program, CAL maintains an origin
counter, a location counter, and a bit position counter. When a
section is first established or its use is resumed, CAL uses the
counters for that section.

The following example illustrates section specification and
deletion and indicates the current section. The example includes
the QUAL pseudo instruction. For a description of the QUAL
pseudo instruction, see appendix A, page 189.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The CAL Program [3]

| DENT STACK The | DENT statenent puts the first entry
on the list of qualifiers. This entry
starts the synbol table for unqualified
synbol s.
SYML = 1 SYML is relative to the main section.
QUAL ONAMEL Second entry on the list of qualifiers.

SYM = 2 SYM2 is the first entry in the synbol
tabl e for QONAMEL.

SNAMESECTI ON M XED SNAME is the second entry on the |ist of
sections

MLEVEL ERROR Reset message level to error elininate
warni ng | evel nessages.

SYM3 = * SYM3 is the second entry in the synbol
table for ONAMEL and is relative to the
SNAME secti on.

MLEVEL * Reset nmessage |l evel to default in effect
before the MLEVEL specification.

SECTION * SNAME is deleted fromthe |ist of
sections.

SYM4 = 4 SYM4 is the third entry in the synbol
table for ONAMEI and is relative to the
mai n section.

QUAL QNAME2 Third entry on the list of qualifiers.

SYMb = 5 SYMb is the first entry in the synbol
tabl e for ONAME2.

SYM6 = [QNAVEL/ SYMR SYM6 gets SYM2 fromthe synbol table for
ONAMElI even though QNAMEL is not the
current qualifier in effect.

QUAL * ONAME2 is renoved as the current
gual i fi er nane.

SYM7 = 6 SYM/ is the fourth entry in the synbol
table for QNAMEL.

SYMB = 7 Second entry in the synbol table for
unqual i fied synbol s.

SR-3108 9.1 Cray Research, Inc. 57

The CAL Program [3]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Origin counter
3.6.3.1

Location counter
3.6.3.2

Word-bit-position counter
3.6.3.3

58

The origin counter controls the relative location of the next word
that will be assembled or reserved in the section. You can
reserve blank memory areas by using either the ORG or BSS
pseudo instructions to advance the origin counter.

When the special element * Ois used in an expression, the
assembler replaces it with the current parcel-address value of
the origin counter for the section in use. To obtain the
word-address value of the origin counter, use W * O. For more
information about the special elements and W prefix, see
subsection 4.5, page 89.

Usually, the location counter is the same value as the origin
counter and the assembler uses it to define symbolic addresses
within a section. The counter is incremented when the origin
counter is incremented. Use the LOC pseudo instruction to
adjust the location counter so that it differs in value from the
origin counter or so that it refers to the address relative to a
section other than the one currently in use. When the special
element * is used in an expression, the assembler replaces it
with the current parcel-address value of the location counter for
the section in use. To obtain the word-address value of the
location counter, Use W * (see subsection 4.5, page 89).

As instructions and data are assembled and placed into a word,
CAL maintains a pointer that indicates the next available bit
within the word currently being assembled. This pointer is
known as the word-bit-position counter. It is 0 at the beginning
of a new word and is incremented by 1 for each completed bit in
the word. Its maximum value is 63 for the rightmost bit in the
word. When a word is completed, the origin and location
counters are incremented by 1, and the word-bit-position counter
is reset to O for the next word.

When the special element * Wis used in an expression, the
assembler replaces it with the current value of the
word-bit-position counter. The normal advancement of the
word-bit-position counter is in increments of 16, 32, and 64 as
1-parcel and 2-parcel instructions or words are generated. You
can alter this normal advancement by using the Bl TWBI TP,
DATA, and VAD pseudo instructions.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual The CAL Program [3]

Force word boundary
3.6.3.4

Parcel-bit-position counter
3.6.3.5

Force parcel boundary
3.6.3.6

SR-3108 9.1

If either of the following conditions are true, the assembler
completes a partial word and sets the word-bit-position and
parcel-bit-position counters to 0:

» The current instruction is an ALI GN, BSS, BSSZ, CON, LCC, or
ORG pseudo instruction.

» The current instruction is a DATA or VWD pseudo instruction
and the instruction has an entry in the location field.

In addition to the word-bit-position counter, CAL also maintains
a counter that points to the next bit to be assembled in the
current parcel. This pointer is the parcel-bit-position counter. It
is 0 at the beginning of a new parcel and advances by 1 for each
completed bit in the parcel. The maximum value is 15 for the
rightmost bit in a parcel. When a parcel is completed, the
parcel-bit-position counter is reset to 0.

When the special element * P is used in an expression, CAL
replaces it with the current value of the parcel-bit-position
counter.

The parcel-bit-position counter is set to 0 following assembly of
most instructions. The pseudo instructions Bl TWBI TP, DATA,
and WAD can cause the counter to be nonzero.

If the current instruction is a symbolic machine instruction, the
assembler completes a partially filled parcel and sets the
parcel-bit-position counter to 0.

Cray Research, Inc. 59

