Cray Assembly Language [4]

This section presents the general rules and statement syntax for
Cray Assembly Language (CAL). This section describes the
following instruction syntax:

» Register designators

+ Names

* Symbols

e Data

» Special elements

» Element prefixes for symbols, constants, or special elements
« Expressions

» Expression evaluation

« Expression attributes

Register Register designators are used in symbolic machine instructions
designators and opdefs to spgcify the regis’Fer to be_: used for an operation.

41 CAL accepts register mnemonics specified in uppercase,

’ lowercase, or mixed case. Each Cray PVP system supports all or
a subset of simple and complex registers.

Complex registers are members of a set of registers that are
identical in function and architecture. The set of registers is
identified by a letter. The specific register within the set is
specified by an octal number up to 4 octal digits in length or a
constant. For example, you specify register S1 from the set of S
registers.

SR-3108 9.1 Cray Research, Inc. 61

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following example illustrates complex register designation:

Al SyM ; CAL permits nixed case in any conbination
; Wth the following restriction: matching
; nanes nmust be entered in the same manner.
REG = 3
A.REG Al ; Register A3 gets the contents of Al
Sl s2 ; Register Sl gets the contents of S2.
A simple register has a predefined function that cannot be
redefined. These registers are identified by register names that
are comprised of only letters.
The following example illustrates simple register designation:
S1 RT ; Register S1 gets the contents of the RT
; register
Table 3 lists register designations for CRAY Y-MP, CRAY C90,
CRAY J90, and CRAY T90 series systems. By convention, B and
T registers are written using two octal digits.
Note: A, B, and SB registers are expanded to 64 bits (32 bits
in C90 mode) on CRAY T90 systems. Several new
instructions use the 64-bit A registers for logical and shift
operations. See appendix E, page 369, for more information
on the CRAY T90 instruction set.
Table 3. Register designations
CRAY Y-MP CRAY C90 CRAY J90 CRAY T90
Number Number Number Number
Mnemonic Mnemonic Mnemonic Mnemonic
Register type Size (in bits) Size (in bits) Size (in bits) Size (in bits)
Data registers 8 8 8 8
(A registers) A0 — A7 A0 — A7 A0 — A7 A0 — A7
32 32 32 64
Data registers 64 64 64 64
(B registers) BOO — B77 BOO - B77 BOO — B77 BOO — B77
32 32 32 64

62

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Assembly Language [4]

Table 3. Register designations

(continued)
CRAY Y-MP CRAY C90 CRAY J90 CRAY T90
Number Number Number Number
Mnemonic Mnemonic Mnemonic Mnemonic
Register type Size (in bits) Size (in bits) Size (in bits) Size (in bits)
Scalar 8 8 8 8
registers S0 -S7 S0 - S7 S0 - S7 S0 - S7
(S registers) 64 64 64 64
Transfer 64 64 64 64
registers TOO —-T77 TOO - T77 TOO —T77 TOO —T77
(T registers) 64 64 64 64
Vector 8 8 8 8
registers VO — V7 VO - V31 VO — V31 VO — V63
(V registers) 64 (64 64 (128 64 (64 64 (128
elements) elements) elements) elements)
Shared 8/cluster 8/cluster 8/cluster 16/cluster
address SBO — SB7 SBO — SB7 SB — SB7Y SBO — SB7
registers 32 32 32 64
(SB registers)
Semaphore 32/cluster 32/cluster 32/cluster 64/cluster
register SMD — SMBY SMD — SMB7 SMD — SMB7 SMD — SM77
(SM register) 1 1 1 1
Status 1 8 1 8
registers SR SRO - SR7 SR SRO - SR7
(SR registers) 32 64 32 64
Shared scalar 8 8 8 16
registers STO — ST7 STO — ST7 STO — ST7 STO — ST15
(ST registers) 64 64 64 64
Channel 1/channel 1/channel 1/channel 1/channel
address CA CA CA CA
register 32 32 32 64
(CA register)
Channel error 1/channel 1/channel 1/channel 1/channel
register CE CE CE CE
(CE register) 32 32 32 64

SR-3108 9.1

Cray Research, Inc.

63

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Table 3. Register designations

(continued)
CRAY Y-MP CRAY C90 CRAY J90 CRAY T90
Number Number Number Number
Mnemonic Mnemonic Mnemonic Mnemonic
Register type Size (in bits) Size (in bits) Size (in bits) Size (in bits)
Channel 1/channel 1 1/channel 1/channel
interrupt c c c c
register 32 6 1 32
(CI register)
Channel limit 1/channel 1/channel 1/channel 1/channel
register CL CL CL CL
(CL register) 32 32 1 32
Master clear 1/channel 1/channel 1/channel 1/channel
register MC MC MC MC
(MC register) 1 1 1 1
Real-time 1 1 1 1
clock register RT RT RT RT
(RT register) 64 64 64 64
Vector length 1 1 1 1
register VL VL VL VL
(VL register) 7 8 7 8
Vector mask 1 2 1 2
registers VM VM), VML VM VM), VML
(VM registers) 64 32 64 64
Exchange 1 1 1 1
address XA XA XA XA
register 8 8 10 16
(XA register)
Program 1 1 1 1
address P P P PA
register 24 32 24 32
(P register)
64 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Vector length register On CRAY C90 systems, vector registers have been increased to
(VL) 128 elements and the vector mask has been increased to 128
4.1.1 bits. On CRAY Y-MP systems and CRAY J90 systems, the VL

register has 7 bits. On CRAY C90 systems and CRAY T90
systems the VL register has 8 bits. To facilitate portable CAL
code, the following symbols are available (UNICOS 7.0 and later)
on all Cray PVP systems:

¢ MAX$VL (maximum vector length)
o L2SMAXS$VL (logo of MAX$VL for shift and mask operations)

« ASMAXS$VL (a micro that yields a valid A register operand
equal to MAX$VL)

These symbols can be used in lieu of conditional code. For

example:
C90l FC /" $CPU'/ , EQ / CRAY C90/
S1 <7
CO0ELSE
S1 <6
CO90ENDI F
SO S1&S2 : Vector residual
S2 S1&S2
A2 S2
$1 F SO, Zero : If no residual
C90l FC /"$CPU'/ , EQ / CRAY C90/
A2 D 128 . First VL = 128
CO90ELSE
A2 D 64 . First VL = 64
CO90ENDI F
$ENDI F

can be replaced with:

S1 <L2$MAXSVL
SO S1&S2 ; Vector residual
S2 S1&S2
A2 S2
$IF SO0,Zero ; |If no residual
A2 “ ASVAXSVL” : First VL
$ENDI F

SR-3108 9.1 Cray Research, Inc. 65

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Vector mask register

(VM)
4.1.2

66

The vector mask register on CRAY Y-MP systems and CRAY J90
systems is a 64-bit register, on CRAY C90 systems there are two
32-bit vector mask registers, and on CRAY T90 systems there
are two 64-bit vector mask registers. The vector mask (VM
register is accessed through the following instructions:

Si VM) ; Get first half of VM
Si VML ; Get second half of VM
VMD S ; Set first half of VM
VML Si : Set second half of VM

If the routine does not manipulate the vector mask, no portable
CAL changes are necessary. The changes necessary for a
portable CAL module depend on the types of manipulations
required of the vector mask. A routine that only logically
combines conditions together (through AND and OR operations)
can create opdefs to simulate a two-word VMregister on all Cray
PVP systems. For example:

Cl2XY [|FC [/”$CPU/, NE, / CRAY C90/
VM) OPDEF
S.REG VM
*
S.REG WM
*
VM) ENDM
VM) OPDEF
VM S. REG
*
VM S. REG
*
VM) ENDM
VML OPDEF
S. REG VML
*
VML ENDM
VML OPDEF
VML S. REG
* VML ENDM
C12XY ENDIF

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Names
4.2

SR-3108 9.1

Using the above opdefs, a system that has a 64-bit VMregister
can be made to look as though it has a 128-bit VMregister. A
portable code sequence such as the following could be written:

S1 VMD ; First half of VM

S2 VML : Possi bl e second half of VM
VM V7,7 : Test second condition

S3 VMD ;. First half of VM

sS4 VML ;. Possi bl e second hal f of VM
S1 S1!1S3 : Conbi ne conditions

S2 S21 4

VM) S1 . Set WM

VML S2

This code can then assemble on any Cray PVP system. The
instructions that actually reference the second half of the VM
register do not generate code except on CRAY C90 systems. The
only extra code for other systems is the S2 S2! S4 instruction.
The Si VML opdef could be modified to set Si to zero if more
sophisticated vector mask operations were to be performed.

Names do not have an associated value or attribute and cannot
be used in expressions. Names that are 1 to 8 characters in
length are used to identify the following types of information:

» Macro instructions

» Micro character strings

» Conditional sequences

« Duplicated sequences
The first character must be one of the following:

« Alphabetic character (A through Z or a through z)
+ Dollar sign ($)

» Percent sign (%)
« At sign (@)

Characters 2 through 8 can also be decimal digits (0 through 9).

Names that are 1 to 255 characters in length can be used to
identify the following types of information:

Cray Research, Inc. 67

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

« Program modules

» Sections

The first character must be one of the valid name characters or
the underscore (_) character. Characters 2 through 255 can also
be decimal digits (0 through 9).

Different types of names do not conflict with each other or with
symbols. For example, a micro can have the same name as a
macro and a program module can have the same name as a
section.

Examples of valid and not valid names:

Valid Comment

count Lowercase is permitted

@A\DD @legal beginning character

_SUBTRACT _ beginning character and 9 characters are
legal

ABCDE465 Combinations of letters and digits are legal

if the first character is legal

Not valid Comment

9knt Begins with a numeric character
JOHNJONES Contains more than 8 characters
Y+Z3 Contains an illegal character
+YZ3 Begins with +

Note: UNICOS supports the Source Code Control System
(SCCS) and UNICOS source manager (USM). If you plan to
use SCCS or USM to store your CAL program, avoid using the
3-character string %4/% where U is any uppercase letter.
SCCS and USM replace these strings throughout your source
program with other text. Because this type of string is
allowed within identifiers and long-identifiers, avoid using it
in names, long names, and symbols.

68 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Symbols
4.3

SR-3108 9.1

The underscore character (_) also is used as the concatenation
character by CAL (see subsection 3.3, page 41). Usually the
assembler edits this character out of a source line. To insert this
character into a long name, either disable editing or use the
predefined concatenation micro ($CNC). To disable editing, use
either the invocation statement or the EDI T pseudo instruction.

A symbol is an identifier that can be from 1 to 255 characters
long and has an associated value and attributes. You can use
symbols in expressions and in the following ways:

» In the location field of a source statement to define the symbol
for use in the program assign it a value and certain
characteristics called attributes.

 In the operand or result field of a source statement to
reference the symbol.

» In loader linkage

A symbol can be local or global depending on where the symbol
is defined; that is, a symbol used within a single program
module is local and a symbol used by a number of program
segments is global (see subsection 3.1.2, page 35). A symbol also
can be unique to a code sequence (see subsection 4.3.1.2, page
71).

CAL generates symbols of the following form (where n is a
decimal digit):

YWmnnnnn

Symbols that begin with the character sequence %®%bare
discarded at the end of a program segment regardless of whether
they are redefinable or defined in the global definitions part, and
regardless of whether they are user-defined or generated by
CAL.

For more detailed information about symbols generated by CAL,
see the description of the LOCAL pseudo instruction in subsection
6.11, page 184.

If a symbol is properly identified and defined as one of the
registers reserved by CAL, a warning message is issued.

Cray Research, Inc. 69

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Symbols can be used if they are:

» Specified as unqualified or qualified.
» Defined or associated with a value and attributes.
- Assigned address, relative, and redefinable attributes.

» Referenced by using the value rather than the symbol itself.

Symbol qualification Symbols defined within a program module (between | DENT and
4.3.1 END pseudo instructions) can be unqualified or qualified. They
are unqualified unless preceded by the QUAL pseudo instruction

(see the QUAL pseudo instruction in appendix A, page 189, for

more information).

Unqualified symbol The following statements describe ways in which unqualified
4.3.1.1 symbols can be referenced:

» Unqualified symbols defined in an unqualified code sequence
can be referenced without qualification from within that
sequence.

 Ifthe symbol has not been redefined within the current
qualifier, unqualified symbols can be referenced without
qualification from within the current qualifier.

+ Unqualified symbols can be referenced from within the current
qualifier by using the form / / symbol.

Unqualified symbols are defined as follows:
symbol = n ; symbol is equal to n

The following example illustrates unqualified symbol definition:

EDT OFF
| DENT TEST
SYM1 = * ; SYM 1 has a value equal to the | ocation
; counter.
Al SYM 1 ; Register Al gets SYM 1 s val ue.
SYM 2 SET 2 ; SYM 2 is redefinable
SYM3 = 3 ; SYM 3 is not redefinable.
70 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Assembly Language [4]

Qualified symbols
4.3.1.2

You can make a symbol that is not a global symbol unique to a
code sequence by specifying a symbol qualifier that will be
appended to all symbols defined within the sequence. The QUAL
pseudo instruction qualifies symbols (see the QUAL pseudo
instruction in appendix A, page 189).

Qualified symbols must be defined with respect to the following
rules:

+ A qualified symbol cannot be defined with a label that is
reserved for registers.

» Symbols can be qualified only in a program module.
Qualified symbols can be referenced as follows:

 If a qualified symbol defined in a code sequence is referenced
from within that sequence, it can be referenced without
qualification.

« If a qualified symbol is referenced outside of the code sequence
in which it was defined, it must be referenced in the form
[qualifier! symbol. The qualifier variable is a 1- to 8-character
identifier defined by the QUAL pseudo instruction and the
symbol variable is a 1- to 255-character identifier.

Qualified symbols are defined as follows:

qualified _symbol = [[identifier]l/ symbol

The following example illustrates the use of qualified symbols:

| DENT
SYML =

QUAL
SYML =

s1

s1

s1

QUAL

S1
S1
END

TEST

1

NAVEL

2

SYML

/1 SYML

/ NAMVE1/ SYML
*

SYML

/1 SYML

/ NAMVE1/ SYML

Assi gnment

Decl are qualifier nane
Qualified synmbol SYML

Regi ster S1
Regi ster S1
Regi ster S1
Pop the top
Regi ster S1
Regi ster S1
Regi ster S1

gets 2 (qualified SYM)
gets 1 (unqualified SYM)
gets 2 (qualified SYM)
of the qualifier stack
gets 1

gets 1

gets 2

SR-3108 9.1

Cray Research, Inc.

71

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Symbol definition A symbol is defined by assigning it a value and attributes. The

4.3.2 value and attributes of a symbol depend on how the program
uses the symbol. The assignment can occur in the following
three ways:

¢ When a symbol is used in the location field of a symbolic
machine instruction or certain pseudo instructions, it is
defined as follows:

— It has the address of the current value of the location
counter (for a description of counters, see subsection 3.6.3,
page 56).

— It has parcel-address or word-address attributes.
— It is absolute, immobile, or relocatable.
— It is not redefinable.

+ A symbol used in the location field of a symbol-defining pseudo
instruction is defined as having the value and attributes
derived from an expression in the operand field of the
instruction. Some symbol-defining pseudo instructions cause
the symbol to have a redefinable attribute. When a symbol is
redefinable, a redefinable pseudo instruction must be used to
define the symbol the second time. Redefinition of the symbol
causes it to be assigned a new value and attributes.

» A symbol can be defined as external to the current program
module. A symbol is external if it is defined in a program
module other than the module currently being assembled. The
true value of an external symbol is not known within the
current program module.

The following are examples of a symbol:

START = * ; The synmbol START has the current val ue of
; the location counter and cannot be
;. redefined.
PARAM SET D 18 ; The symbol PARAMis equal to the decimal
; value 18 and can be redefined.
EXT SECOND ; ldentifies SECOND as an external synbol.

72 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Symbol attributes
4.3.3

Address attributes
4.3.3.1

SR-3108 9.1

When a symbol is defined, it assumes two or more attributes.
These attributes are in three categories as follows:

o Address
» Relative
» Redefinable

Every symbol is assigned one attribute from each of the first two
categories. Whether a symbol is assigned the redefinable
attribute depends on how the symbol is used. Each symbol has a
value of up to 64 bits associated with it.

Each symbol is assigned one of the following address attributes:
+ Word address

A symbol is assigned a word-address attribute if it appears in
the location field of a pseudo instruction (such as a BSS or
BSSZ) that defines words, if it is equated to an expression
having a word-address attribute, or if word is explicitly stated
in the operand field of an EXT pseudo instruction.

o Parcel address

A symbol is assigned a parcel-address attribute if it appears in
the location field of a symbolic machine instruction or certain
pseudo instructions, if it is equated to an expression having a
parcel-address attribute, or if parcel is explicitly stated in the
operand field of an EXT pseudo instruction.

» Value

A symbol has a value attribute if it does not have
word-address or parcel-address attributes, or if value is
explicitly stated in the operand field of an EXT pseudo
instruction. All globally defined symbols have an address
attribute of value.

o Absolute

A symbol is assigned the relative attribute of absolute when
the current location counter is absolute and it appears in the
location field of a machine instruction, BSS pseudo instruction,
or data generation pseudo instruction such as BSSZ or CON or
if it is equated to an expression that is absolute. All globally
defined symbols have a relative attribute of absolute. The
symbol is known only at assembly time.

Cray Research, Inc. 73

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Relative attributes Each symbol is assigned one of the following relative attributes:
4.3.3.2
« Immobile

A symbol is assigned the relative attribute of immobile when
the current location counter is immobile and it appears in the
location field of a machine instruction, BSS pseudo instruction,
or data generation pseudo instruction such as BSSZ or CON or
if it is equated to an expression that is immobile. The symbol
is known only at assembly time.

» Relocatable

A symbol is assigned the relative attribute of relocatable when
the current location counter is relocatable and it appears in
the location field of a machine instruction, BSS pseudo
instruction, or data generation pseudo instruction such as
BSSZ or CON. A symbol also is relocatable if it is equated to an
expression that is relocatable.

« External

A symbol is assigned the relative attribute of external when it
is defined by an EXT pseudo instruction. An external symbol
defined in this manner is entered in the symbol table with a
value of 0. The address attribute of an external symbol is
specified as value (V), parcel (P), or word (W; the default is
value.

A symbol is also assigned the relative attribute of external if it
is equated to an expression that is external. Such a symbol
assumes the value of the expression and can have an attribute
of parcel address, word address, or value.

Note: The assignment of an unknown variable with a
register at assembly time is made by using a symbol with a
relative attribute of external.

74 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Assembly Language [4]

In the following example, register s1 is loaded with variable
ext 1 at assembly time:

extl

ext

sl
end
i dent
entry

end

testl
ext1
test?2

extl
3

: Variable extl is defined as an external
; vari abl e
; extl transmits value to register sl

; When the two nodul es are |inked, register
; S1 gets 3.

Redefinable attributes

4.3.3.3

In addition to its other attributes, a symbol is assigned the
attribute of redefinable if it is defined by the SET or M CSI ZE
pseudo instructions. A redefinable symbol can be defined more
than once in a program segment and can have different values
and attributes at various times during an assembly. When such
a symbol is referenced, its most recent definition is used by the
assembler. All redefinable symbols are discarded at the end of a
program segment without regard to whether they were defined
in the global definitions.

The following example illustrates the redefinable attribute:

SYML
Syme
SYmML
SYM?

| DENT

SET
SET
SET
END

TEST

WNDN P

; Not redefinable

; Redefinabl e

; Error: SYML previously defined as 1
: Redefinabl e

Symbol reference

434

SR-3108 9.1

When a symbol is in a field other than the location field, the
symbol is being referenced. Reference to a symbol within an
expression causes the value and attributes of the symbol to be
used in place of the symbol. Symbols can be found in the
operand fields of pseudo instructions.

Cray Research, Inc. 75

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

A symbol reference within an expression can contain a prefix
that causes the value and attributes associated with the symbol
to be altered. The prefix affects only the specific reference in
which it occurs. For details, see subsection 4.6, page 90.

The following example illustrates a symbol reference:

S1 SYML+1 ; Register Sl gets the value of SYM +1.
; SYM +1 is an exanple of a synbol in an
; operand field used as an expression.
I FA DEF, SYML ; Synmbol s can al so be used outside of an
; expression. In this instance, SYM is
; nhot used within an expression; it is a
; synbol .
Data Some instructions manipulate data. CAL instructions use data
4.4 of the following types:
» Constants
« Data items
 Literals
The subsections that follow describe these types of data.
Constants Constants can be defined as floating, integer, or character.
44.1

Floating constant
44.1.1

76

A floating constant is evaluated as a one- or two-word quantity,
depending on the precision specified. (See the floating-point
data format figures in the appropriate symbolic machine
instruction manual.)

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

The floating constant is defined as follows:

[decimal-prefix] floating-decimal [binary-scale decimal-integer)

SR-3108 9.1

In the preceding definition, variables are defined as follows:

e decimal-prefix

This variable specifies the numeric base for the
floating-decimal and/or the decimal-integer variables. D' or
d’ specifies a decimal-prefix and is the only prefix available
for a floating constant.

 floating-decimal

The floating-decimal variable can include the decimal-integer,
decimal-fraction and/or decimal-exponent variables. A
decimal-integer is a nonempty string of decimal digits. A
decimal-integer or a decimal-fraction is a nonempty string of
decimal digits representing a whole number, a mixed number,
or a fraction.

A floating-decimal can be defined as follows:

— A decimal-integer followed by a decimal-fraction with an
optional decimal-exponent and decimal-integer. For
example:

n.norn. nEnorn. nE+n or n. nDn or n. nD+n

— A decimal-integer followed by a period (.) with a
decimal-exponent and decimal-integer. For example:

n.orn. Enorn. E+n or n. nDn or n. nD+n

— A decimal-integer followed by a decimal-exponent and
decimal-integer. For example:

nEn or nE+n or nDn or nD+n

— A decimal-fraction followed by an optional decimal-exponent
and decimal-integer. For example:

.nor.nEnor.nE+nor.nbDnor.nD+n

Cray Research, Inc. 77

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

78

» decimal-exponent

The power of 10 by which the integer and/or fraction will be
multiplied; indicates whether the constant will be single
precision (E or e; one 64-bit word) or double precision (D or d;
two 64-bit words). n is an integer in the base specified by

prefix.

If no decimal-exponent is provided, the constant occupies one
word. decimal-exponents are defined as follows:

— En (Positive decimal exponent, single precision)

— E+n (Positive decimal exponent, single precision)

— E-n (Negative decimal exponent, single precision)

— Dn (Positive decimal exponent, double precision)

— D+n (Positive decimal exponent, double precision)

— D-n (Negative decimal exponent, double precision)
binary-scale decimal-integer

The integer and/or fraction will be multiplied by a power of 2.
Binary scale is specified with S or s and an optional
add-operator (+ or —). n is an integer in the base specified by
the decimal-prefix. For example:

Snor S+n Positive binary exponent

sn or s+n Positive binary exponent

S-nors—n Negative binary exponent
Note: Double-precision floating-point numbers are truncated
to single-precision floating-point numbers if pseudo

instructions, which can reserve only one memory word (such
as the CON pseudo instruction) are used.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Assembly Language [4]

The following examples illustrate floating constants:

CON D15 ;
CON 4. 5E+10 ;

CON 4. D+15 ;
CON D 1. 0E-6 ;

CON 1000e2 ;

M xed deci mal of the formn.n.

Si ngl e-preci sion floating constant of
the formn. nE+n.

Doubl e- preci sion floating constant of
the form n. D+n.

Negative floating constant of the form
n. nE-n.

Single precision floating constant of

t he form nD+n.

SYM = 1777752d+1 0 ; Doubl e-precision floating constant of
; the form nD+n.
Integer constant An integer constant is evaluated as a 64-bit twos complement
4.4.1.2 integer. The integer constant is defined as follows:

base-integer [binary-scale base-integer |

octal-prefix octal-integer [binary-scale octal-integer |
decimal-prefix decimal-integer [binary-scale decimal-integer |
hex-prefix hex-integer [binary-scale hex-integer |

SR-3108 9.1 Cray Research, Inc.

79

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

In the preceding definition, variables are defined as follows:

80

base-integer

A string of decimal digits (0, 1, 2, 3,4,5, 6, 7, 8, 9) of any
length

binary-scale

The integer and/or fraction that will be multiplied by a power
of 2. binary-scale is specified with S or s and an optional
add-operator (+ or —). n is an integer in the base specified by
the decimal-prefix. For example:

Sn or Stn (positive binary exponent)

Sn or S+n (positive binary exponent)

s—n or S—n (negative binary exponent)
base-integer, octal-prefix, decimal-prefix, or hex-prefix

Numeric base used for the integer. If no prefix is used,
base-integer is determined by the default mode of the
assembler or by the BASE pseudo instruction. A prefix can be
one of the following:

D ord’ Decimal (default mode)
O oro’ Octal
X orx’ Hexadecimal

octal-integer
A string of octal integers (0, 1, 2, 3, 4,5, 6, 7) of any length
decimal-integer

A string of decimal integers (0, 1, 2, 3,4, 5,6, 7, 8, 9) of any
length

hex-integer

A string of hexadecimal integers (0,1, 2,3,4,5,6,7,8,9, Aor
a,Borb,Corc,Dord, Eore,Forf)of any length

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

The following examples illustrate integer constants:

S1 O 1234567 ; Cctal-prefix followed by octal -i nteger.
A4 D 50 ; Integer-constant of the form
; decimal -prefix foll owed by
; deci mal -i nt eger.
SYM = x ffffffa ; Integer-constant of the form hex-prefix
; followed by hex-integer.

Character constants The character constant is defined as follows:
44.1.3

[character-prefix]| character-string [character-suffix |

In the preceding definition, variables are defined as follows:
» character-prefix

The character set used for the stored constant:

Aor a ASCII character set (default)
Corc Control Data display code
Eore EBCDIC character set

» character-string

The default is a string of zero or more characters (enclosed in
apostrophes) from the ASCII character set. Two consecutive
apostrophes (excluding the delimiting apostrophes) indicate
one apostrophe.

» character-suffix

The justification and fill of a character string:

Hor h Left-justified, blank-filled (default)
Lorl Left-justified, zero-filled

Rorr Right-justified, zero-filled

Zorz Left-justified, zero-filled, at least one

trailing binary zero character guaranteed

SR-3108 9.1 Cray Research, Inc. 81

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following examples illustrate character constants:

S3 TR

A ABC L

S1 E XYZ'H

C aut

32/’ EFG

; ASCI| character set (default) right

; justified, zero filled.

; ASCI| character set left justified, zero

; filled.

; EBCDI C character set left justified, blank
o filled.

: CDC character set
; filled (default).
; ASCI| character set left justified, blank

; filled within a 32-bit field (all default).

left justified, blank

Data items
4.4.2

Floating data item
4421

82

A character or data item can be used in the operand field of the
DATA pseudo instruction and in literals. The length of the data
field occupied by a data item is determined by its type and size.
Data items can be floating, integer, or character. The
subsections that follow describe these types of data items.

Single-precision floating data items occupy one word and
double-precision floating data items occupy two words. A
floating data item is defined as follows:

[sign 1 floating-constant

In the preceding definition, the sign variable is defined as
follows:

. sign

The sign variable determines how the floating data item will
be stored. The sign variable can be specified as follows:

+ or omitted Uncomplemented
- Negated (twos complemented)

Ones complemented

Cray Research, Inc.

SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Assembly Language [4]

Note: Although syntactically correct, # is not permitted; a
semantic error is generated with floating data.

 floating-constant

The syntax for a floating data item is the same as the syntax
for floating constants. Floating constants are described in
subsection 4.4.1.1, page 76.

The following example illustrates floating constants for data
items:

DATA

DATA

DATA

DATA

DATA

DATA

DATA

D 1345. 567 ; Decimal floating data itemof the form
;on.n.

1345. E+1 ; Decimal floating data itemof the form
: n. BE+n.

4. 5E+10 ; Single-precision floating constant of
: the formn. nE+n.

4. D+15 ; Doubl e-precision floating constant of
: the formn. Dn.

D 1. 0E-6 ; Negative floating constant of the form
7 N.NE-n.

1000e2 ; Single-precision floating constant of
: the form nen.

1.582 ; Floating binary scale data item of the

: formn.nSn.

Integer data item

4.4.2.2

SR-3108 9.1

An integer data item occupies one 64-bit word and is defined as
follows:

[sign]integer-constant

In the preceding definition the sign variable defines the form of a
data item to be stored. The sign variable can be replaced in the
integer data item definition with any of the following:

+ or omitted Uncomplemented

— Negated (twos complemented)

Ones complemented

Cray Research, Inc. 83

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The syntax for integer-constant is described in subsection 4.4.1.2,
page 79.

The following example illustrates integer constants for data:

DATA +0’' 20 ; Cctal integer
WD 40/ 0, 24/ O 200

Character data item The character data item is as follows:
4.4.2.3

[character-prefix] character-string [character-count] [character suffix]

In the preceding definition, variables are defined as follows:
» character-prefix

This variable specifies the character set used for the stored
constant. It is specified as follows:

Aora ASCII character set (default)
Corc Control Data display code
Eore EBCDIC character set

» character-string

The default is a string of zero or more characters (enclosed in
apostrophes) from the ASCII character set. Two consecutive
apostrophes (excluding the delimiting apostrophes) indicate
one apostrophe.

» character-count

The length of the field, in number of characters, into which the
data item will be placed. If count is not supplied, the length is
the number of words needed to hold the character string. If a
count field is present, the length is the character count times
the character width; therefore, length is not necessarily an
integral number of words. The character width is 8 bits for
ASCII or EBCDIC, and 6 bits for control data display code.

84 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

If an asterisk is in the count field, the actual number of
characters in the string is used as the count. Two apostrophes
that are used to represent one apostrophe are counted as one
character.

If the base is mixed, CAL assumes that the count is decimal.
See appendix A, page, 189 for information on the base pseudo
instructions.

» character-suffix

This variable specifies justification and fill of the character
string as follows:

Hor h Left-justified, blank-filled (default)
Lorl Left-justified, zero-filled

Rorr Right-justified, zero-filled

Zorz Left-justified, zero-filled, at least one

trailing zero character guaranteed

The following example illustrates character data items:

DATA A ERROR | N DSN ; ASCI| character set left justified and

DATA E error

DATA ‘Error’

in dsn"R ; EBCDI C character set right justified,

; blank fill by default; two words

: zero filled; stored in two words.

; Default ASCII character set left

; justified and blank filled by default
;. stored in one word.

Literals
4.4.3

SR-3108 9.1

Literals are read-only data items whose storage is controlled by
CAL. Specifying a literal lets you implicitly insert a constant
value into memory. The actual storage of the literal value is the
responsibility of the assembler. Literals can be used only in
expressions because the address of a literal, rather than its
value, is used.

The first use of a literal value in an expression causes the
assembler to store the data item in one or more words in a
special local block of memory known as the literals section.
Subsequent references to a literal value do not produce multiple
copies of the same literal.

Cray Research, Inc. 85

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Because literals can map into the same location in the literals
section, CAL checks for the presence of matching literals before
new entries are added. This check is made bit by bit. If the
current string is identical to any string currently stored in the
literals section, CAL maps that string to the location of the
matching string. If the current string is not identical to any of
the strings currently stored, the current string is considered to
be unique, and is assigned a location in the literals section.

The following special syntaxes are in effect for literals:
 Literals always have the following attributes:

— Relocatable (relative) to a constant section
— Word (address)

 Literals cannot be specified as character strings of zero bits.
The actual constant within a literal must have a bit length
greater than 0. In actual use, you must specify at least one
6-bit character for the CDC character set or one 8-bit
character for the ASCII (default) and EDCDIC character sets.

» By default, literals always fall on full-word boundaries.
Trailing blanks are added to fill the word to the next word
boundary.

When used as an element of an expression, a literal is defined as
follows:

=data-item

A data item for literals is the same as data items for constants.
Data items for constants are described in subsection 4.4.2, page
82.

Single-precision literals are stored in one 64-bit word (default).
Double-precision literals are stored in two 64-bit words. The
following example shows how literals can be specified with single
or double precision:

CON
CON

=1.5
=1.sD1

; Single-precision literal
; Doubl e-precision literal

86

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Figure 6 illustrates how the ASCII character a is stored by
either of the following instructions (* represents a blank

character):
CON =‘aH
CON =a

01100001 NNANNNNANNNN | ANANNANNNNAN | ANANNANNANNN | ANNNNANNNANN | ANNNNNNAN| ANANNNANNNN [AANNNANNNNN

Figure 6. ASCII character with left-justification and blank-fill

Figure 7 illustrates how the ASCII character a is stored by any
of the following instructions (* represents a blank character):

CON =fa'L
CON ‘aR
CON -as

01100001 | 00000000 | 00000000 | 00000000| OO000000| OOO00000| 00000000 | 00000000

Figure 7. ASCII character with left-justification and zero-fill
Figure 8 illustrates how the ASCII character a is stored by the
following instruction (* represents a blank character):

CON =fa'R

SR-3108 9.1 Cray Research, Inc. 87

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

This example illustrates how the ASCII character a is stored
when =' @’ Ris specified.

00000000 | 00000000| 00000000| 00000000 | OOOO0O000 | OOO00000| 00000000| 01100001

Figure 8. ASCII character with right-justification and zero-fill

Figure 9 illustrates how the ASCII character a is stored by the
following instruction (* represents a blank character):

CON =fa*R

01100001

00000000

00000000

00000000

00000000

00000000

00000000 | 00000000

Figure 9. ASCII character with right-justification in 8 bits

The three character sets available to CAL are declared as

follows:
CON
CON
CON
CON

= A
=A° A
=C A

=E' A

8-Dbit
8-Dbit
6-bit
8-Dbit

ASClI | character.

ASClI | character.
CDC char acter.

EBCDI C character.

The following example illustrates the use of the H,L, R, or Z
options when specifying literals:

CON

CON

= AB' 3

=* AB' 3H

; Left—justified with one bl ank—padded on the

; right (default).

; Left—justified with one bl ank—-padded on the

; right (default).

CON ='AB 6R ; Right—justified,
; Zeros.
= AB' 6Z ; Left—justified, padded with four trailing

, Zeros

filled with four I eading

CON

88 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Special elements
45

SR-3108 9.1

Special elements are used to obtain the current value of the
location counter, the origin counter, the word pointer, and the
parcel pointer. Special elements can occur as elements of
expressions. For a description of expression elements, see
subsection 4.7, page 94. The origin, location, word-bit-position,
and parcel-bit-position counters are described in section 3, page
33.

Elements that have special meanings to the assembler are
described as follows:

« *_ Location counter.

The asterisk (*) denotes a value equal to the current value of
the location counter with parcel-address attribute and
absolute, immobile, or relocatable attributes. The location
counter is absolute if the LOC pseudo instruction modified it by
using an expression that has a relative attribute of absolute.
The location counter is immobile if it is relative to either a
STACK or TASKCOMsection. The location counter is relocatable
in all other cases.

« *Aor *a. Absolute location counter.

The * Aor * a denotes a value equal to the current value of the
location counter with parcel-address and absolute attributes.

e *Bor *b. Absolute origin counter.

The * B or *b denotes a value equal to the current value of the
origin counter relative to the beginning of the section with
parcel-address and absolute attributes.

* *Qor *0. Origin counter.

The * Oor * 0 denotes a value equal to the current value of the
origin counter relative to the beginning of the current section.
The origin counter has an address attribute of parcel. If the
current section is a section with a type of STACK or TASKCOM
it has an immobile attribute. In all other cases, it has a
relative attribute of relocatable.

Cray Research, Inc. 89

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Element prefixes
4.6

90

« *Wor *w Word pointer.

The * Wor * wdenotes a value equal to the current value of the
word-bit position counter with absolute and value attributes.
*Wis relative to the word and the word-bit-position counter is
almost always equal to 0, 16, 32, or 48. CAL issues a warning
message when the word-bit-position counter has a value other
than 0 (not pointing at a word boundary) and is used in an
expression.

* *Por *p. Parcel pointer.

The * P or * p denotes a value equal to the current value of the
parcel-bit-position counter with absolute and value attributes.
The range of possible values for * P is 0 through 15. CAL
issues a warning message when the parcel-bit-position counter
has a value other than 0 (not pointing at a parcel boundary)
and is used in an expression. The following statement defines
where you are within a parcel, and it is almost always 0:

SYML = *P

A symbol, constant, or special element can be prefixed by an
element prefix (P. or p. for parcel or W or w. for word) causing
the value to assume parcel-address or word-address attributes,
respectively, in the expression in which the reference appears.

A prefix does not permanently alter the attribute of a symbol. A
prefix only effects the current reference.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Parcel-address prefix
4.6.1

SR-3108 9.1

A symbol, special element, or constant can be prefixed by P. or
p. to specify the attribute of parcel address. If a symbol (sym)
has the attribute of word address, the value of P. sym or p. sym
is the value of sym multiplied by 4. Each Cray word is divided
into 4 parcels that are designated as a, b, ¢, and d. Each parcel
has a 2-bit value associated with it; 00, for a, 01> for b, 10, for
c,and 115 for d. To find the exact parcel being addressed,
multiply the word address by 4. For example, the following
word-address attributes are translated into parcel-address
attributes:

Word Equation Value Parcel representation
2 2x4 010 2a
4 4x4 O 20 4a
0 0x4 oo Oa

A P. orp. specified for an element with value-address attribute
does not cause the value to be multiplied by 4; however, the P. or
p. prefix can be used to assign the parcel-address attribute to
the element.

A P. orp. specified for an element with parcel-address attribute
does not alter its characteristics.

Figure 10, page 92, shows the octal numbering of parcels a, b, c,
and d in a 6-word block.

Cray Research, Inc. 91

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Parcel a Parcel b Parcel c Parcel d
Word 0 0 1 2 3
Word 1 4 5 6 7
Word 2 10 11 12 13
Word 3 14 15 16 17
Word 4 20 21 22 23
Word 5 24 25 26 27

Figure 10. Word/parcel conversion for 6 words

The following example illustrates the use of the parcel-address

prefix:
SYML = * ; SYML is equal to the location counter with
; parcel and rel ocatable attributes.
Sl SYML ; Register S1 gets the rel ocatabl e parcel
; address of SYML..
Sl P. SYML ; The sanme val ue that was generated by the
; last statenment is produced.

92 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Word-address prefix

4.6.2

A symbol, special element, or constant can be prefixed by W or
w. to specify the attribute of word address. If a symbol (sym) has
the attribute of parcel address, the value of W sym or w. sym is
the value of sym divided by 4. When converting from
parcel-address attribute to a word-address attribute, divide the
parcel address by 4. When the conversion is completed, the
result is always understood to be pointing at parcel a.

If the parcel address is not pointing at a word boundary, CAL
issues a warning message and truncates the division to a word
boundary. For example, the following parcel address attributes
are converted into word-address attributes:

Parcel representation Value Equation Word Truncation warning
Oc 2 2/4 0 Yes
3a 14 14/4 3 No
5c 26 26/4 5 Yes
Oa 0 0/4 0 No
6a 30 30/4 0 No
AW or w. prefix specified for an element with a value-address
attribute does not cause the value to be divided by 4. However,
the W or w. prefix can be used to assign the word-address
attribute to the element.
A W or w. prefix specified for an element with a word-address
attribute does not alter its characteristics.
The following example illustrates the use of a word-address
prefix:
SYme = W * ; Word and rel ocatable attri butes.
A0 W ADDR
Ad W BUFF+0’ 100
SR-3108 9.1 Cray Research, Inc. 93

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Expressions
4.7

The result and operand fields for many source statements
contain expressions. An expression consists of one or more terms
joined by special characters referred to as adding operators
(add-operator). A term consists of one or more special elements,
constants, symbols, or literals (prefixed-element) joined by
multiplying operators (multiply-operator). Figure 11 diagrams
an expression and Figure 12 diagrams a term.

Add-operatory
(optional)

termy

Add-operatory termg . . . Add-operator,

Figure 11. Diagram of an expression

prefixed-elementy

maultiply-operatory | prefixed-elementy | multiply-operator, | prefixed-element,

Figure 12. Diagram of a term

An expression is defined as follows:

embedded-argument or [add-operator | term { add-operator term }

Add-operator
4.7.1

94

The variables listed in the previous definition are defined in the
subsections that follow.

An add-operator joins two terms in an expression or precedes the
first term of an expression. Add-operators include the plus sign
(+) and the minus sign () and perform addition and subtraction.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Assembly Language [4]

Terms
4.7.2

A term consists of one or more prefixed-elements joined by
special characters referred to as multiply-operators. The

multiply-operators complete all multiplication (*) and division (/)
before the add-operators complete addition or subtraction.

A term is defined as follows:

prefixed-element { multiply-operator prefixed-element }

The following general rules apply:

Only one prefixed-element within a term can have a relative
attribute of immobile or relocatable. All other

prefixed-elements in that term must have relative attributes of

absolute.

A prefixed-element with a relative attribute of external must
be the only prefixed-element of the term. If preceded by an
add-operator, that operator must be a +.

The prefixed-element to the right of a slash (/) must have a
relative attribute of absolute.

A term that contains a slash (/) must have an attribute of
absolute up to the point at which the / is encountered (see
subsection 4.7.2.3, page 97).

Division by 0 produces an error.

The following example illustrates the use of terms:

SYM =
S1
S2
S3

*

SYML
SYM1+1
1*2*3/ 4

; Rel ocatabl e and parcel attributes.

; One termw thin an expression.

; Two ternms within an expression.

; Every prefixed-el ement preceding a / mnust

; have the attribute of absolute and the

; prefixed-element following the / nust have
:an attribute of absol ute.

SR-3108 9.1

Cray Research, Inc.

95

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following are examples of terms:

Term Description
SI GvA* 5 Two elements, SI GVA and 5, are joined by a
multiplying operator.
DELTA A single-element term.
Prefixed-elements A prefixed-element is defined as follows:

4721

[# 1 [element-prefix | element

The variables in the previous definition are defined as follows:
» complement character (#)

If an element is prefixed with the complement character (#),
the element itself must have a relative attribute of absolute.

» element-prefix

If an element is prefixed with an element-prefix, the attribute
of the element is as follows:

P. or p. Parcel-address attribute
W or w. Word-address attributes

For more information about element-prefixes, see subsection
4.6, page 90.

o element

An element can be a special element, constant, symbol, or
literal. Elements can be optionally preceded by a complement
character (#) or an element-prefix (P. or W). For more
information about element, see subsection 4.5, page 89.

96 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Multiply-operator
4.7.2.2

Term attributes
4.7.2.3

SR-3108 9.1

The following are examples of elements:

SI GVA Symbol

* Special element
*W Special element
O 77S3 Numeric constant

A ABC R Character constant
=A" ABC Literal

A multiply-operator joins two prefixed-elements.
Multiply-operators are the asterisk (*) which specifies
multiplication and the slash (/) which specifies division.

Each prefixed-element in a term has a relative and an address
attribute associated with it. CAL assigns relative and address
attributes to the entire term by evaluating each prefixed-element
in the term.

The relative and address attributes for a term vary as CAL
evaluates each prefixed-element in the term. The final attribute
of the term is the attribute in effect when the final (rightmost)
element of the term is evaluated. As CAL encounters each
prefixed-element in the left-to-right scan of a term, it assigns an
attribute to the term based on the multiply-operator (if any)
preceding the prefixed-element, the attribute of any previous
partial term, and the attribute of the prefixed-element currently
being evaluated.

Relative attributes (the prefixed-elements and multiply-operators
that compose a term) determine the relative attributes of the
term.

CAL assigns every term a relative attribute determined by the
following rules:

« A term assumes the attributes of absolute if every
prefixed-element is absolute. For example:

2*4/ 3*4

In the above example, absolute (2) * absolute (4) is evaluated
as absolute. Absolute (2*4)/ absolute (3) is evaluated as
absolute. Absolute (2* 4/ 3) * absolute (4) is evaluated as
absolute.

Cray Research, Inc. 97

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

98

» A term assumes an attribute of immobile if it contains one

prefixed-element with immobile attributes, zero or more
prefixed-elements with absolute attributes, and no
prefixed-elements with relocatable or external attributes.
Thus, an immobile term can contain one immobile
prefixed-element with the remaining prefixed-elements being
absolute. For example:

STKSYM 3

In the above example, immobile (STKSYM * absolute (3) is
evaluated as immobile.

A term assumes an attribute of relocatable if it contains one
prefixed-element with relocatable attributes, zero or more
prefixed-elements with absolute attributes, and no
prefixed-elements with immobile or external attributes. Thus,
a relocatable term can contain one relocatable prefixed-element
with the remaining prefixed-elements being absolute.

2* SYML* 2

In the above example, absolute (2) * relocatable (SYML) is
evaluated as relocatable. Relocatable (2* SYML) * absolute (2)
is evaluated as relocatable.

A term assumes the attribute of external if it consists of one
prefixed-element and the prefixed-element is external. For
example:

EXT1

In the above example, one external (EXT1) element is
evaluated as external.

EXT2* SYML

In the above example, external (EXT2) * relocatable (SYML)
produces an error.

In the following example, Absolute (4) * relocatable (SYML) is
evaluated as relocatable; relocatable (4* SYML) / 4 produces an
error:

4* SYML/ 4

All prefixed-elements to the left of the / must have a relative
attribute of absolute. See general rules for terms in subsection
4.7.2, page 95.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

SR-3108 9.1

CAL assigns one of the following address attributes to every
term:

o Parcel-address
» Word-address

» Value

Figure 13, page 100, indicates how address attributes are
assigned to terms and partial terms. Vterm, Pterm, and Wterm
denote the attribute of the partial term resulting from all
elements evaluated before the current element. In Figure 13, P,
Wand V denote an element being incorporated into the term and
having an attribute of parcel-address, word-address, or value,
respectively.

If a partial term has the address attribute of the left column and
is multiplied or divided by a prefixed-element with the address
attribute of the top horizontal row, the resulting attribute is
determined at the intersection of the column and row by the
arithmetic operator position in the upper-left corner of the table.

The results for multiplication and division are given in the top
(*) and bottom (/) halves of each box on the chart, respectively.
For example, if partial term Vterm is multiplied by a
prefixed-element with an address attribute of word, the address
attribute for the new partial term is word.

A 2-digit value following an address attribute indicates that
although a result is specified, a warning message is issued that
corresponds to the 2-digit superscript. For example, if the
partial term interm is divided by a prefixed-element with an
address attribute of parcel, the result is value and message 84 is
issued as follows:

termwi th value address is divided by parcel el enent

See appendix B, page 281, for the text associated with messages.

Cray Research, Inc. 99

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

*
Y P w 2"d term
/
\ P W
Vterm
\V/ 84 \/86
P p8o V82
Pterm - -
P Y V87
W v81 V83 V - \Value
Wterm _ _— P - Parcel
w V85 \Y W - Word
nn — Warning message number
Partial
term
Figure 13. Address attribute assignment chart
Expression Expressions are evaluated from left to right. Each term is
evaluation evaluated from left to right with CAL performing 64-bit integer

multiplication or division as each multiply-operator is

4.8 encountered. Expressions are defined as follows:

embedded-argument | [add-operator | term { add-operator term }

Note: The embedded-argument is intended for use with
macros and opdefs and should not be included in expressions.
Although the embedded-argument is syntactically correct, the
CAL expression evaluator cannot evaluate expressions that
contain embedded-arguments. See the following examples.

syml
synR

1 ; Valid expression
(D ; Syntactically correct, but CAL issues
; error message.

100 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Cray Assembly Language [4]

An embedded-argument can be any argument-character that is
enclosed in parentheses. For example:

MACRO
FRED p1l, p2
ABC = pl
s1 ABC* p2
FRED ENDM
FRED (1+2),3 7 (1+2) is the enbedded argunent
When a complete term is evaluated, it is added or subtracted
from the sum of the previous terms. CAL does not check for
overflow and underflow.
The assembler treats each element as a 64-bit twos complement
integer. Character constants are left- or right-justified within a
field width equal to the destination field. If the field width is
shorter than the length of the character constant, a warning
message is issued. Elements are complemented in the rightmost
bits of a field width equal to the destination field.
Note: CAL processes floating-constants as expected when
they are specified as one uncomplemented prefixed-element
within an expression. If floating-constants are used in any
other way, an appropriate warning message is issued and
integer arithmetic is used to evaluate the expression. CAL
processes the floating-constants within the expressions of the
following examples as expected:
A CON 1.0
B CON -1.0
C CON 4.5
D CON .3
E CON —. 75
SR-3108 9.1 Cray Research, Inc. 101

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

CAL issues an appropriate warning message and evaluates the

floating-constants within the expressions of the following
examples by using integer arithmetic:

102

G CON 1.0+2.0
H CON -1*3.4
| CON —#1.0
This example demonstrates how the result of a VWD with a 9-bit
destination field is stored; * represents a blank space.
VWD D 9/"abc’+1 ; The ternms of the expression ‘abc’ and 1
Figure 14 and Figure 15 contain the binary representations of
the ASCII character strings “ abc” and 1, respectively.
01100001 01100010 01100011 NNNNNNNN | AANNNANNNN | ANNNNNNN | AANANNNNNN | AANNNNNN

Figure 14. 64-bit binary representation of ASCII abc, left-justified

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000001

Figure 15. 64-bit binary representation of 1

Because the character constant is left-justified by default within

a field width equal to the 9 bits specified in the example, the
64-bit representation of “ abc” is actually as in Figure 16.

00000000

00000000

00000000

00000000

00000000

00000000

00000000

11000010

Figure 16. Binary representation of ASCII abc, right-justified in 9 bits

Cray Research, Inc.

SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

CAL adds the value 1 (Figure 15, page 102) to the value shown in
Figure 16, page 102 (011000010), and stores it in the destination
field (see Figure 17). CAL issues a warning message stating
that the character string “ abc” has been truncated. The
destination field contains a value of 303 (011000011).

011000011

Figure 17. Result of VWD with 9-bit destination field

The following example demonstrates that elements are
complemented in the rightmost bits of a field width equal to the
destination field:

VWD D 4/ #1+1 ; The terns of the expression are the
conmpl ement of 1 and the value 1. The
destination field is 4-bits w de.

Figure 18 and Figure 19 contain the complement of 1 and the
binary representation of the value 1 (0001), respectively.

11111111 11111112 1112111211 11111111 11111112 11111111| 11111111 11111110

Figure 18. 64-bit binary representation of the complement of 1

00000000 | 00000000 | 00000000 | 00000000| OO000000| OOO00000| 00000000 | 00000001

Figure 19. 64-bit binary representation of 1

SR-3108 9.1 Cray Research, Inc. 103

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Figure 20 shows that the actual value of the complement of 1 is
stored in the rightmost bits of a word in memory.

00000000 | 00000000| 00000000| 00000000 | OOOO0000 | OO0O00000| 00000000| 00001110

Figure 20. Binary representation of the complement of 1 stored in the rightmost bits of a 4-bit
field

The binary value 1110 (Figure 20) is stored in the destination
field, and CAL adds the value 1 to the destination field; the
result (1111) is shown as the rightmost 4 bits as in Figure 20 and
is stored as shown in Figure 21.

1111

Figure 21. Result of VWD with 4-bit destination field

Evaluating immobile An immobile term has one immobile prefixed-element, no

and relocatable terms relocatable or external prefixed-elements, and zero or more

with coefficients absolute prefixed-elements. A relocatable term has one

4.8.1 relocatable prefixed-element, no immobile or external
prefixed-elements, and zero or more absolute prefixed-elements.

An immobile term has an associated 64-bit integer coefficient
equal to the value of the term obtained when a 1 is substituted
for the immobile element. The value of an immobile term is the
value of the immobile element multiplied by the coefficient.

A relocatable term has an associated 64-bit integer coefficient
equal to the value of the term obtained when a 1 is substituted
for the relocatable element. The value of a relocatable term is
the value of the relocatable element multiplied by the coefficient.

Each section has two relative section coefficients, one represents
an immobile relative attribute and one represents a relocatable
relative attribute. These relative section coefficients are
initialized to 0 before the evaluation of each expression. As each
term is evaluated within an expression, the coefficient of the
term is either added to or subtracted from the corresponding

104 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

coefficient of the corresponding section depending on the sign
immediately preceding the term. When each term within an
expression has been evaluated, the expression is assigned a
relative attribute as follows:

» Absolute; if the expression contains no external terms and all
of the coefficients for all of the sections are 0.

» Immobile; if the expression contains no external terms and all
of the coefficients for all of the sections are 0, except for one
immobile coefficient that must have a value of 1. The
expression is immobile relative to the section with the
coefficient of 1.

« Relocatable; if the expression contains no external terms and
all of the coefficients for all of the sections are 0 except for one
relocatable coefficient that must have a value of 1. The
expression is relocatable relative to the section with the
coefficient of 1.

« External; if the expression contains one external term and all
of the coefficients for all of the sections are 0.

« Not valid; all other cases.

For example, if SYMBOL is assumed to be relocatable,

SYMBOL* 2+1-SYMBCQL is considered a valid expression when
evaluated by CAL. Because SYMBQOL is relocatable, substituting
1 for SYMBCL generates three terms (1* 2, +1, and —1). The first
term (1* 2) includes the relocatable term SYMBOL. A value of 2 is
stored with the coefficient maintained by CAL for the relocatable
section to which SYMBCQL is relative. The second term (+1) is
absolute and does not affect the evaluation of the relocatable
coefficient. The third term (-1) includes the relocatable term
SYMBOL. A 1is subtracted from the coefficient maintained by
CAL for the relocatable section SYMBOL.

When the entire term is evaluated, the coefficient associated
with the relocatable term SYMBOL equals 1. Because all
relocatable terms within the expression are relative to one
section and the final coefficient of the section is 1, the expression
is relocatable relative to that section.

Every relocatable symbol is relative to a section. All sections
contain an initial coefficient of 0 before expression evaluation.
The operator immediately preceding a relocatable term is the
operator associated with that term. For example, the coefficient
for SYMBCL is maintained as —1. When the sign of a coefficient is

SR-3108 9.1 Cray Research, Inc. 105

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

not indicated, it is assumed to be positive. The coefficient for
SYMBOL* 1 is maintained as +1* 1. If 1a (100) is substituted for
SYMBQL in the following expression; the binary that will be
evaluated is 100*010+001-100:

SYMBCL* 2+1-SYMBCL

CAL evaluates the string from left to right. The following
partial results are obtained:

100*010=1000
1000+0001=1001
1001-0100=0101=1b

The final result (1b) is the result that you would expect to be
generated. The following example demonstrates the correct and
incorrect use of a relocatable term:

| DENT
SYMBOL =

S1

S1

END

*

SYMBOL* 2+1

SYMBOL* 2+1

; SYMBCL is given a value equal to the
; current |ocation counter

—SYMBOL ; When eval uated, this expression
; produces a val ue equal to the current
; location counter plus 1. The value is
; relocatabl e.
; When eval uated, this expression
; produces a value equal to twice the
; current location counter plus 1. The
; value is not relocatable. CAL
; produces an error nessage.

106

In the preceding example, the term SYMBOL* 2+1 is not
relocatable because the results generated depend on the location
of the module by the loader. If the loader puts the module at
400, SYMBOL* 2+1=801. If the loader puts the module at 200,
SYMBCOL* 2+1=401. If a term is evaluated and found to be not
relocatable, CAL issues an error-level diagnostic message.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

The following example illustrates the use of relocatable terms:

SNAMEL
SYMBOL1
SYMBOL2

SNAMEZ2
SYMBCL3

SYmMBOL4

| DENT
SECTI ON
BSS

BSS
SECTI ON
BSS
SECTI ON

END

3* SYMBOL2+SYMBOL3-1SYMBOL2—-2* SYMBOL1

SR-3108 9.1

In the previous example, the expression
3* SYMBOL2+SYMBOL3-1-SYMBOL2—-2* SYMBOL1 contains five
terms, four of which are relocatable; it is evaluated as follows:

Value of
Term coefficient Attribute

3* SYMBOL2 3*1 Relocatable (relative to
SNAMEL)

+SYMBOL3 +1 Relocatable (relative to
SNAME?)

-1 Absol ut e

—-SYMBQOL2 -1 Relocatable (relative to
SNAMEL)

2* SYMBOL1 —2*1 Relocatable (relative to
SNAMEL)

The coefficients for the SNAMEL and SNAME2 sections were
initialized to 0 before the expression was evaluated. The main
section has a coefficient of 0. When the coefficients for the
relocatable terms relative to SNAMEL are evaluated, the result is
0 (+3—-1-2). When the coefficients for the relocatable terms for
SNAME2 are evaluated, the result (+1) is 1.

SYMBCL4 obtains a relative attribute of relocatable because one
section in the expression has a coefficient of 1 (SNAME2) and all
other sections (SNAME1) maintained for the expression have
coefficients of 0. The final expression is relocatable relative to
SNAME2, because SNAVE? is the section with the coefficient of 1.

Cray Research, Inc. 107

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

108

The address attribute of the expression is evaluated, as follows:

Term Partial term

Attribute

3*SYMBOL2 Value*word
+SYMBOL3 Word
-1 Value
-SYMBOL2 Word
2* SYMBOL1 Value*word

Word (see Figure 13, page 100)
Word (see Figure 13, page 100)
Value (see Figure 13, page 100)
Word (see Figure 13, page 100)
Word (see Figure 13, page 100)

The address attribute for the entire expression is wor d. For a
description of the manner in which parcel-address,
word-address, and value attributes are assigned to entire
expressions, see subsection 4.9, page 110.

The value of the expression

3* SYMBOL2+SYMBOL3-1-SYMBOL2-2* SYMBOL1=O 7. Itis

calculated as follows:

Term Result
3* SYMBOL2 3*4=0" 14

SYMBCL3 0
-1 -1
—-SYMBOL2 -4

2* SYMBOL1 -2*0=0

Description

SYMBOL2 begins with word 4 in
section SNAVEL; 4 is substituted
for SYMBOL2.

SYMBOL3 begins with word 0 in
section SNAVEZ2; 0 is substituted
for SYMBOL3.

Term 3 is absolute; no
substitution.

SYMBOL2 begins with word 4 in
section SNAMVEL; 4 is substituted
for SYMBCOL2.

SYMBOL1 begins with word 0 in
section SNAMVEL; 0 is substituted
for SYMBCOL1.

When the values for the terms (O 14+0—-1—4-0) are substituted
for the (3* SYMBCOL2+SYMBCOL3—-1-SYMBOL2—-2* SYMB(OL1)

expression, the result is 7.

Cray Research, Inc.

SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

The following example illustrates the use of immobile terms:

i dent
t askc section
tcsym bss
section
synbol =

t est
t askcom
4

*

t askc+t csym-t askc

SR-3108 9.1

In the preceding example, the t askc+t csym-t askc expression
contains three terms, two that are relocatable and one that is
immobile. The expression is evaluated as follows:

Value of
Term coefficient Attribute

t askc +1 Relocatable (relative to t askc)
+tcsym +1 Immobile (relative to t askc)
—t askc -1 Relocatable (relative to t askc)

The relative section coefficients for relocatable t askc and
immobile t csymwere initialized to 0 before the expression was
evaluated. When the coefficients for the relocatable terms
relative to t askc are evaluated, the result (+1-1=0) is 0. When
the coefficient for the immobile term (t csym) is evaluated, the
result (+1) is 1. Because the term with the relative attribute of
immobile has the coefficient of 1, the entire expression is
assigned a relative attribute of immobile.

The address attribute of the expression is evaluated as follows:

Term Partial term Attribute

* taskc Word word (see Figure 13, page 100)
+tcsym Word word (see Figure 13, page 100)

-t askc Word word (see Figure 13, page 100)
The address attribute for the entire expression is word. For a
description of the manner in which parcel-address,

word-address, and value attributes are assigned to entire
expressions, see subsection 4.9, page 110.

Cray Research, Inc. 109

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The value of the expression t askc+t csym-t askc is calculated

as follows:

Term Result Description

t askc 0 t askc is assigned a value of 0 relative
to the task common section t askc; 0 is
substituted for t askc.

+tcsym O t csymbegins with word 0 in t askcom
section t askc; 0 is substituted for
tcsym

—-taskc O t askc is assigned a value of 0 relative

to the task common section t askc; 0 is
substituted for t askc.

When the values for the terms (0+0-0) are substituted for the
expression (t askc+t csym-t askc), the result is 0.

Expression To determine the expression attributes for a full expression,
attributes evaluate the terms within an expression. The assembler can
49 assign the following attributes to an expression:

» Relative

Relative attributes are classified as follows:
— Absolute

— Immobile

— Relocatable

— External
o Address

Address attributes are classified as follows:
— Parcel-address
— Word-address

— Value

110 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

Relative attributes
4.9.1

Every expression assumes one of the relative attributes as
follows:

An expression is absolute if no external terms are present and
the coefficients of all other sections are 0.

An expression is immobile if the coefficient is 0 for each
section within the current module represented in the
expression. The exception is when one section has a coefficient
of +1 (positive relocation) and is immobile with respect to that
expression.

An expression is relocatable if the coefficient for every section
within the current module represented in the expression is 0.
The exception is when one section has a coefficient of +1
(positive relocation) and is relocatably associated with that
expression. An expression error occurs if a coefficient does not
equal 0 or +1, or if more than one coefficient is nonzero.

An expression is external if it contains one external term and if
the coefficients of all sections are 0. An expression error
occurs if more than one external term is present. All external
terms defined with the EXT pseudo instruction have a value of
0 associated with them.

The following are examples of relative attributes (see section 3,
page 33, for a description of sections):

| DENT TEST

EXT EXT1
SNAME1 SECTI ON
SYML BSS 4
SYme = W *
BSS 5

END

SYM4 EXT1+SYML

SYMb EXTlI +SYM -SYM2 ; Legal ; SYM (+1) and SYM2 (-1) cance

; Illegal external termand rel ocatable
: ternms with coefficients of 1 in the
; same expression

; each other and produce a coefficient

; of O for the expression. The val ue of
; the expression EXTl +SYM -SYM2 is 4

; (0+0-4).

SR-3108 9.1

Cray Research, Inc. 111

Cray Assembly Language [4]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Address attributes
4.9.2

Truncating expression
values
4.9.3

Each expression assumes an address attribute as follows:

« An expression has a parcel-address attribute if at least one
term has a parcel-address attribute and all other terms have
value or parcel-address attributes.

« An expression has a word-address attribute if at least one
term has a word-address attribute and all other terms have
value or word-address attributes.

» All other expressions have value attributes. A warning
message is issued if an expression has terms with both
parcel-address and word-address attributes.

An expression value is truncated to the field size of the
expression destination.

The following example illustrates expression value truncation:

SYmL BSS 4

SYme = -1 ; 64 bits
VWD 5/ -1 5 bits
VWD 3/5 ; 3-bit destination field, value of 5
WD 2/'5 ; 2-bit destination field, value of 5,
; truncation nessage issued.
WD 3/ exp ; 3-bit destination field, the range of
; values is as follows: -4 < exp > 7.
A warning message is issued if the leftmost bits lost in
truncation are not all 0’s or all 1’s with the leftmost remaining
bit also 1 (that is, a negative quantity).
In the preceding example, truncation occurs in statement VWD
5/ -1 (see Figure 22), but an error message is not generated
because the part that was truncated included all 1’s and the
leftmost bit of the 5-bit field is also a 1.
112 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language [4]

11111111 111121211(1112111211{111112111111112112| 11111111 11111111 11111111

Truncated Result

Figure 22. 64-bit binary representation of —1

11111

Figure 23. Truncated value of —1 stored in a 5-bit field

Truncation occurs in statement VWD 3/ 5. An error message is
not generated, because the truncated part was all 0’s. The result
is truncated and stored as shown in Figure 24.

00000000 | 00000000| 00000000| 00000000 | OOOO0000 | OO000000| 00000000| 00000101

Truncated

Figure 24. 64-bit binary representation of 5

101

Figure 25. Truncated value of 5 stored in a 3-bit field

Truncation occurs in statement VWD 2/ 5. CAL generates a
warning message, because a combination of 1’s and 0’s is
truncated. The result is truncated and stored as shown in
Figure 26.

SR-3108 9.1 Cray Research, Inc. 113

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

00000000 | 00000000| 00000000| 00000000 | OOOO0000 | OO000000| 00000000| 00000101

Truncated

Figure 26. 64-bit binary representation of 5

01

Figure 27. Truncated value of 5 stored in a 2-bit field

If the values generated by the statement in VWD 3/ exp are in
the range from —4 through 7, a warning message is not
generated.

If a message of error-level is issued for an expression it causes
the expression to have a relative attribute of absolute, an
address attribute of value, and a value of 0.

The following are examples of expressions:

Expression Description

ALPHA An expression consisting of one term.

*WHBETA Two terms; * Wand BETA.

GAMW 4+DELTA*5 Two terms; each consisting of two
elements.

MU-NU* 2+* Three terms; the first consisting only

of MJ, the second consisting of NU* 2,
and the third consisting only of the
special element *.

O 1 00+=0 100 Two terms; a constant and the
address of a literal.

In the following examples, P and Qare immobile symbols in the
same section, Rand S are relocatable symbols in the same
section, COMis relocatable in a common section, X and Y are
external, and A and B are absolute. The location counter is
currently in the section containing Rand S.

114 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Cray Assembly Language

(4]

SR-3108 9.1

The following expressions are absolute:

A+B

"AR-1

2* R-S—* All relocation of terms cancel.
1/ 2*R Equivalent to 0* R,

A* (R-S) Error; parentheses not allowed.

The following expressions are immobile:

P+B

Q+3

COwWP-Q P and Qcancel.

X+P Error; external and immobile.

R+P Error; relocatable and immobile.

P+Q Error; immobile coefficient of 2.

Q 16*16 Error; division of immobile element is illegal.

The following expressions are relocatable:

*

w. *+B

R+2

COWR-S Rand S cancel.

3**-R-S 3** cancels —Rand -S.

X+R Error; external and relocatable.

R+S Error; relocation coefficient of 2.

Q+S Error; immobile and relocatable.

R/ 16*16 Error; division of relocatable element is

illegal.

Cray Research, Inc.

115

Cray Assembly Language [4] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following expressions are external:
X+2

Y-100

X+R-* R, —* cancel relocation.

X+2** —R-S Relocatable terms 2**, —R, —S cancel each

other.

—X+2 Error; external cannot be negated.

X+Y Error; more than one external.

Xz Error; division of an external element is
illegal.

116 Cray Research, Inc. SR-3108 9.1

