Defined Sequences [6]

SR—-3108 9.1

Defined sequences are sequences of instructions that can be
saved for assembly later in the source program. Defined
sequences have several functional similarities.

The four types of defined sequences are specified by the MACRO,
OPDEF, DUP, and ECHO pseudo instructions. The ENDM ENDDUP,

and STOPDUP pseudo instructions terminate defined sequences.
The LOCAL and OPSYN pseudo instructions are associated with

definitions and are included in this section.

The defined sequence pseudo instructions are as follows:

Pseudo
MACRO

OPDEF

ECHO

ENDM
ENDDUP
STOPDUP

Description

A sequence of source program instructions
saved by the assembler for inclusion in a
program when called for by the macro name.
The macro call resembles a pseudo
instruction.

A sequence of source program instructions
saved by the assembler for inclusion in a
program called for by the OPDEF pseudo
instruction. The opdef resembles a symbolic
machine instruction.

Introduces a sequence of code that is
assembled repetitively a specified number of
times; the duplicated code immediately
follows the DUP pseudo instruction.

Introduces a sequence of code that is
assembled repetitively until an argument
list is exhausted.

Ends a macro or opdef definition.
Terminates a DUP or ECHO sequence of code.

Stops the duplication of a code sequence by
overriding the repetition condition.

Cray Research, Inc. 127

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Similarities among

defined sequences
6.1

Editing
6.1.1

128

Pseudo Description

LOCAL Specifies unique strings that are usually
used as symbols within a MACRO, OPDEF,
DUP, or ECHO pseudo instruction.

OPSYN Defines a location field functional that is the
same as a specified operation in the operand
field functional.

EXI TM Terminates the innermost nested MACRO or
OPDEF expansion.

For more information on macros and opdefs see the UNICOS
Macros and Opdefs Reference Manual, publication SR-2403.

Defined sequences have the following functional similarities:

« Editing

¢ Definition format

+ Formal parameters

 Instruction calls

e Interact with the | NCLUDE pseudo instruction

Assembler editing is disabled at definition time. The body of the
definition (see subsection 6.1.2, page 129) is saved before micros
and concatenation marks are edited.

If editing is enabled, editing of the definition occurs during
assembly each time it is called. The ENDDUP, ENDM END,

I NCLUDE, and LOCAL pseudo instructions and prototype
statements should not contain micros or concatenation
characters because they may not be recognized at definition
time.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

When a sequence is defined, editing is disabled and cannot be
explicitly enabled. When a sequence is called, CAL performs the
following operations:

» Checks all parameter substitutions marked at definition time
« Edits the statement if editing is enabled

» Processes the statement

By disabling editing at definition time (default) and specifying
the | NCLUDE pseudo instruction with embedded underscores, a
saving in program overhead is achieved. Because editing is
disabled at definition time, concatenation does not occur until
the macro is called. If editing is enabled when the macro is
called, the file is included at that time. This technique is
demonstrated in the following example:

MACRO
| NC

I N_CLUDE MYFI LE

ENDM

; | NCLUDE pseudo instruction with an enbedded
. underscore

Definition format
6.1.2

SR-3108 9.1

Embedding underscores in an | NCLUDE pseudo instruction
becomes desirable when the | NCLUDE pseudo instruction
identifies large files. Because files are included when the macro
is called and not at definition time, embedding underscores in
the | NCLUDE pseudo instruction can reduce the overhead
required for a program.

MACRO, OPDEF, DUP, and ECHO pseudo instructions use the same
definition format. The format consists of a header, body, and
end.

The header consists of a MACRO, OPDEF, DUP, or ECHO pseudo
instruction, a prototype statement for a MACRO or OPDEF
definition, and, optionally, LOCAL pseudo instructions. For a
macro, the prototype statement provides a macro functional

Cray Research, Inc. 129

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Formal parameters
6.1.3

130

definition and a list of formal parameters. For an opdef, the
prototype statement supplies the syntax and the formal
parameters.

LOCAL pseudo instructions identify parameter names that CAL
must make unique to the assembly each time the definition
sequence is placed in a program segment. Asterisk comments
can be placed in the header and do not affect the way CAL scans
the header. Asterisk comments are dropped from the definition.
To force asterisk comments into a definition, see subsection
3.3.5, page 44.

The body of the definition begins with the first statement
following the header. The body can consist of a series of CAL
instructions other than an END pseudo instruction. The body of
a definition can be empty, or it can include other definitions and
calls. A definition used within another definition is not
recognized, however, until the definition in which it is contained
is called; therefore, an inner definition cannot be called before
the outer definition is called for the first time.

A comment statement identified by an asterisk in column 1 is
ignored in the definition header and the definition body. Such
comments are not saved as a part of the definition sequence.
Comment fields on other statements in the body of a definition
are saved.

An ENDMpseudo instruction with the proper name in the location
field ends a macro or opdef definition. A statement count or an
ENDDUP pseudo instruction with the proper name in the location
field ends a dup definition. An ENDDUP pseudo instruction with
the proper name in the location field ends an echo definition.

Formal parameters are defined in the definition header and
recognized in the definition body. Four types of formal
parameters are recognized as follows:

» Positional

» Keyword

« Echo

e Local

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

SR-3108 9.1

The characters that identify positional, keyword, echo, and local
parameters must all have unique names within a given
definition. Positional, keyword, and echo parameters are also
case-sensitive. To be recognized, you must specify these
parameters in the body of the definition exactly as specified in
the definition header. Parameter names must meet the
requirements for identifiers as described in subsection 4.2, page
67.

You can embed a formal parameter name within the definition
body; however, embedded parameters must satisfy the following
requirements:

» The first character of an embedded parameter must begin with
a legal initial-identifier-character.

* An embedded parameter cannot be preceded by an
initial-identifier-character (for example, PARAMis a legally
embedded parameter within the ABC_PARAM DEF string
because it is preceded by an underscore character). PARAMis
not a legally embedded character within the string
ABCPARANDEF because it is preceded by an
initial-identifier-character (C).

« An embedded parameter must not be followed by an
identifier-character.

In the following example, the embedded parameter is legal
because it is followed by an element separator (blank
character):

PARAMG78

In the following example, the embedded parameter is illegal
because it is followed by the identifier-character 9:

PARAMG789

+ Embedded parameters must contain 8 or less characters.
PARAM5789 is illegal because it contains 9 characters. The
character that follows an embedded parameter (9) cannot be
an identifier-character.

» If and only if the new format is specified, an embedded
parameter must occur before the first comment character (;) of
each statement within the body.

* An embedded parameter must have a matching formal
parameter name in the definition header.

Cray Research, Inc. 131

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

» Formal parameter names should not be END, ENDM ENDDUP,
LOCAL, or | NCLUDE pseudo instructions. If any of these are
used as parameter names, substitution of actual arguments
occurs when these names are contained in any inner definition
reference.

Note: If the file is included at expansion time, arguments are
not substituted for formal parameters into statements within
included files.

Instruction calls Each time a definition sequence of code is called, an entry is

6.1.4 added to a list of currently active defined sequences within the
assembler. The most recent entry indicates the current source of
statements to be assembled. When a definition is called within a
definition sequence that is being assembled, another entry is
made to the list of defined sequences, and assembly continues
with the new definition sequence belonging to the inner, or
nested, call.

At the end of a definition sequence, the most recent list entry is
removed and assembly continues with the previous list entry.
When the list of defined sequences is exhausted, assembly
continues with statements from the source file.

An inner nested call can be recursive; that is, it can reference
the same definition that is referenced by an outer call. The
depth of nested calls permitted by CAL is limited only by the
amount of memory available.

The sequence field in the right margin of the listing shows the
definition name and nesting depth for defined sequences being
assembled. Nesting depth numbers begin in column 89 and can
be one of the following: :1,:2,:3,:4,:5,:6,:7,:8,:9,:*.

If the nesting depth is greater than 9, CAL keeps track of the
current nesting level and an asterisk represents nesting depths
of 10 or more. Nesting depth numbers are restricted to two
characters so that only the two rightmost character positions are
overwritten.

132 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

SR-3108 9.1

If the sequence field (columns 73 through 90) of the source file is
not empty, CAL copies the existing field for a call into every
statement expanded by the call reserving columns 89 and 90 for
the nesting level. For example, if the sequence field for MCALL
was LQB992A. 112, the sequence field for a statement expanded
from MCALL would read as follows:

LQB992A. 11 2 A

Additional nested calls within MCALL would change the nesting
level, but the sequence field would be unchanged during MCALL.
For example:

LQB992A. 112
LQB992A. | 12
LQB992A. 112
LQB992A. 112
LQB992A. 112
LQB992A. 112

— X WDNDNDN

If the sequence field (columns 73 through 90) of the source file is
empty, CAL inserts the name of the definition, as follows:

Name Description

Macr o The inserted name in the sequence field is the
functional found in the result field of the macro
prototype statement.

Opdef The inserted name in the sequence field is the
name used in the location field of the OPDEF
pseudo instruction itself.

Dup The inserted name in the sequence field is the
name used in the location field of the DUP pseudo
instruction, or if the count is specified and name
is not, the name is * Dup.

Echo The inserted name in the sequence field is the
name used in the location field of the ECHO
pseudo instruction.

In all cases, the first two columns of the sequence field contain
asterisks (**) to indicate CAL has generated the sequence field.
Columns 89 and 90 of the sequence field are reserved for the
nesting level. If, for example, the sequence field is missing for
MCALL, it would read as follows:

** MCALL @1

Cray Research, Inc. 133

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Interaction with the
I NCLUDE pseudo
instruction

6.1.5

Macros (MACRO)
6.2

134

Additional nested calls within MCALL would change the nesting
level, but the sequence field number would be unchanged for the
duration of MCALL.

The following example illustrates how CAL tracks the nesting
sequence:

*MCALL
*MCALL
*MCALL
*MCALL
*MCALL
** MCALL
** MCALL

P YW NNN PP

The | NCLUDE pseudo instruction operates with defined
sequences, as follows:

Sequence Description

MACRO I NCLUDE pseudo instructions are expanded
at definition time.

OPDEF | NCLUDE pseudo instructions are expanded
at definition time.

DUP I NCLUDE pseudo instructions are expanded
at definition time. If count is specified, the
I NCLUDE pseudo instruction statement itself
is not included in the statements being
counted.

ECHO | NCLUDE pseudo instructions are expanded
at definition time.

A macro definition identifies a sequence of statements. This
sequence of statements is saved by the assembler for inclusion
elsewhere in a program. A macro is referenced later in the
source program by the macro call. Each time the macro call
occurs, the definition sequence is placed into the source program.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

You can specify the MACRO pseudo instruction anywhere within a
program segment. If the MACROpseudo instruction is found
within a definition, it is defined. If the MACRO pseudo instruction
is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

If a macro definition occurs within the global definitions part of
a program segment, it is defined as global. If macro definitions
occur within a program module (an | DENT, END sequence), they
are local. A global definition can be redefined locally, however,
at the end of the program module, it is reenabled and the local
definition is discarded. A global definition can be referenced
from anywhere within the assembler program following the
definition.

The following example illustrates a macro definition:

MACRO
GLOBAL

* GLOBAL DEFINITION | S USED.

GLOBAL ENDM
LI ST
GLOBAL

* GLOBAL DEFI NI TION | S USED.
| DENT TEST

GLOBAL

* GLOBAL DEFI NI TION IS USED.

MACRO
GLOBAL

* Redefinition warning nessage is issued
* LOCAL DEFI NI TION | S USED.

GLOBAL ENDM
GLOBAL

* LOCAL DEFI NI TION IS USED.

END
| DENT
GLOBAL

* GLOBAL DEFI NI TION | S USED.

END

; G obally defined.

MAC
; Call to global definition.
; Call to global definition.

; Local |l y defi ned.
; Attenpted gl obal definition.

: Call to local definition.

: Local definitions discarded
TEST?2
; Call to gl obal definition.

SR-3108 9.1

Cray Research, Inc. 135

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Macro definition The macro definition header consists of the MACRO pseudo

6.2.1 instruction, a prototype statement, and optional LOCAL pseudo
instructions. The prototype statement provides a name for the
macro and a list of formal parameters and default arguments.

A comment statement, identified by an asterisk in column 1, is
ignored in the definition header or definition body. Such
comments are not saved as a part of the definition sequence.
Comment fields on other statements in the body of a definition
are saved.

The end of a macro definition is signaled by an ENDMpseudo
instruction with a functional name that matches the functional
name in the result field of the macro prototype statement. For a
description of the ENDMpseudo instruction, see subsection 6.6,
page 177.

The following macro definition transfers an integer from an A
register to an S register and converts it to a normalized
floating-point number:

macr o
i nt conv pl, p2; pl=Areg, p2=S reqg.
p2 +f _pl ; Transfer with special exp and sign
; extension.
p2 +f _pl; Normalize the S register.
i ntconv endm ; End of macro definition.

As with every macro, | NTCONV begins with the MACRO pseudo

instruction. The second statement is the prototype statement,
which names the macro and defines the parameters. The next
three statements are definition statements that identify what

the macro does. The ENDMpseudo instruction ends the macro

definition.

136 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The format of the macro definition is as follows:

ignored MACRO ignored
[location] functional parameters
LOCAL [namell,[namel]

functional ENDM

The variables in the above macro definition are described as
follows:

» location

The location variable specifies an optional location field
parameter. It must be terminated by a space and it must meet
the requirements for names as described in subsection 4.2,
page 67.

» functional

The functional variable specifies the name of the macro. It
must be a valid identifier or the equal sign. If functional is the
same as a currently defined pseudo instruction or macro, this
definition redefines the operation associated with functional,
and a message is issued.

* parameters

The parameters variable specifies positional and/or keyword
parameters. Positional parameters must be entered before
keyword parameters. Keyword parameters do not have to
follow positional parameters. The syntax of the parameter
variable is as follows:

positional-parameters|, [keyword-parameters]]

SR-3108 9.1 Cray Research, Inc. 137

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

138

The syntax for positional-parameters is described as follows:

[[!'] [*] namel [, positional-parameters]

The variables that comprise the positional parameter are
described as follows:

— />

The exclamation point (!) is optional. Ifit is not included,
the positional-parameter’s argument can be an embedded
argument, character string, or null string. If the
exclamation point (!) is included, the parameter can be a
syntactically valid expression or a null string.

A left parenthesis signals the beginning of an embedded
argument and must be terminated by a matching right
parenthesis. An embedded argument can contain an
argument or pairs of matching left and right parentheses. If
an asterisk precedes the positional parameter name, the
embedded argument is used in its entirety. If an asterisk
does not precede the positional parameter name, the
outermost parentheses are stripped from the embedded
argument and the remaining string is used as the

argument.

A character string can be any character up to but not
including a legal terminator (space, tab, or semicolon for
new format) or an element separator (comma). If CAL finds
an open parenthesis (character string) with no closing
parenthesis (which would make it an embedded-argument),
the following warning-level message is issued:

Enbedded argunent was not found.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

A syntactically valid expression can include a legal
terminator (space, tab, or semicolon for new format) or an
element separator (comma). The syntactically valid
expression satisfies the requirements for an expression, but
it is used only as an argument and is not evaluated in the
macro call itself. If the syntactically valid expression is an
embedded argument, then, as long as an asterisk precedes
the positional-parameter name, the embedded argument is
used in its entirety. If an asterisk does not precede the
positional-parameter name, the outermost parentheses are
stripped from the embedded argument and the remaining
string is used as the argument. Use of the syntactically
valid expression permits you to enter a string (=' ,’ R) of
characters that may contain one or more spaces or a comma.

The null string is an empty string.
— positional-parameters

positional-parameters must be specified with valid and
unique names and they must meet the requirements for
names as described in subsection 4.2, page 67. There can be
none, one, or more positional parameters. The default
argument for a positional-parameter is an empty string.

The positional parameters defined in the macro definition
are case-sensitive. Positional parameters that are specified
in the definition body must identically match positional
parameters defined by the macro prototype statement.

The syntax for keyword-parameters can be any of the
following:

[*] name=lexpression-argument-value]

[, [keyword-parameters]]

[*] ! name=[expression-argument-value]
[, [keyword-parameters]]

[*] name=[string-argument-value]

[, [keyword-parameters]]

SR-3108 9.1 Cray Research, Inc. 139

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The elements of keyword-parameters are described as follows:
— keyword-parameters

keyword-parameters must be specified with valid and
unique names. Names within keyword-parameter must
meet the requirements for names as described in subsection
4.2, page 67.

There can be zero, one, or more keyword-parameters. You
can enter names within keyword-parameters in any order.
Default arguments can be provided for each
keyword-parameter at definition time, and they are used if
the keyword is not specified at call time.

The keyword-parameters defined in a macro definition are
case-sensitive. The keyword-parameters specified in the
macro body must match the positional-parameters specified
in the macro prototype statement.

The ! is optional. If the! is not included, the —s option
argument can be an embedded argument, a character
string, or a null string. If the! is included, the parameter
be either a syntactically valid expression or a null string.

Embedded argument. A left parenthesis signals the
beginning of an embedded argument and it must be
matched by a right parenthesis. An embedded argument
can also contain pairs of matching left and right
parentheses. If an asterisk precedes the positional
parameter name, the embedded argument is used in its
entirety; otherwise, the outermost parentheses are stripped
from the embedded argument and the remaining string is
used as the argument.

Character string. Any character up to but not including a
legal terminator (space, tab, or semicolon for new format) or
an element separator. If CAL finds an open parenthesis
(character string) with no closing parenthesis (which would
make it an embedded argument), the following
warning-level listing message is issued:

Enbedded argunent was not found.

The null argument is an empty string.

140 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Syntactically valid expression. An expression can include a
legal terminator (space, tab, or semicolon for new format) or
an element separator (comma). The syntactically valid
expression is a legal expression, but it is used only as an
argument and is not evaluated in the macro call itself.

If the syntactically valid expression is an embedded
argument and if an asterisk precedes the positional
parameter name, the embedded argument is used in its
entirety. If an asterisk does not precede the
positional-parameter name, the outermost parentheses are
stripped from the embedded argument and the remaining
string is used as the argument.

If a default is provided for a keyword-parameter, it must
meet the preceding requirements.

The following example illustrates the use of positional
parameters:

MACRO
JUSTI FY I PARAM
; Macro prototype.

JUSTI FY ENDM
JUSTI FY ‘"R ; Macro call
JUSTI FY ‘ 'R Macro call

When the following macro is called, the positional parameter p1
receives a value of v1 because an asterisk does not precede the
parameter on the prototype statement. The positional
parameter p2, however, receives a value of (v2) because an
asterisk precedes the parameter on the prototype statement.

macr o
paren pl, p2 ; Macro prototype.

paren endm
paren (v1),(v2) ; Mcro call.

SR-3108 9.1 Cray Research, Inc. 141

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Macro calls
6.2.2

An instruction of the following format can call a macro
definition:

[locarg]
[locarg]

functional
functional

positional-arguments [, 7 [keyword-arguments]]
keyword-arguments

142

The elements of the macro call are described as follows:

» locarg

The locarg element specifies an optional location field
argument. locarg must be terminated by a space or a tab (new
format only). locarg can be any character up to but not
including a space. If a location field parameter is specified on
the macro definition, you can specify a matching location field
parameter on the macro call. locarg is substituted wherever
the location field parameter occurs in the definition. If no
location field parameter is specified in the definition, this field
must be empty.

functional

The functional element specifies the macro functional name. It
must be an identifier or an equal sign. functional must match
the functional specified in the macro definition.

positional-arguments

Positional-arguments specify an actual argument string that
corresponds to a positional-parameter that is specified in the
definition prototype statement. The requirements for
positional-arguments are specified by the corresponding
positional-parameter in the macro definition prototype
statement. Positional-arguments are not case-sensitive to
positional-parameters on the macro call.

The first positional-argument is substituted for the first
positional-parameter in the prototype operand field, the second
positional-argument string is substituted for the second
positional-parameter in the prototype operand field, and so on.
If the number of positional-arguments is less than the number
of positional-parameters in the prototype operand field, null
argument strings are used for the missing
positional-arguments.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Two consecutive commas indicate a null (empty)
positional-argument string.

» keyword-arguments

keyword-arguments are an actual argument string that
corresponds to a keyword-parameter specified in the macro
definition prototype statement. The requirements for
keyword-arguments are specified by the corresponding
keyword-parameter in the macro definition prototype
statement.

keyword-arguments are not recognized until after n subfields
(n commas); n is the number of positional parameters in the
operand field of the macro definition.

You can list keyword-arguments in any order; matching the
order in which keyword-parameters are listed on the macro
prototype statement is unnecessary. However, because the
keyword-parameter is case-sensitive, it must be specified in the
macro call exactly as specified in the macro prototype
statement to be recognized.

The default keyword-parameters specified in the macro
prototype statement are used as the actual
keyword-arguments for missing keyword-arguments.

All arguments must meet the requirements of the corresponding
parameters as specified in the macro definition prototype
statement.

Note: The! and * are not permitted on the macro call
statement. These characters specified in the prototype
statement for positional-parameters or keyword-parameters
are remembered by CAL when the macro is called.

SR-3108 9.1 Cray Research, Inc. 143

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

To call a macro, use its name in a code sequence. The | NTCONV
macro is called as follows:

MACRO
| NTCONV P1, P2 ; P1=A reg, P2=Sreg
P2 +F P1; Transfer with special expression and
; sign extension.
P2 +F_P2; Normalize the S register
| NTCO ENDM : End of macro definition
LI ST MAC
Call and expansion of the | NTCO\V macro:
| NTCONV Al, S3; Macro call.
S2 +FA1 ; Transfer with special expression and
; sign extension.
S2 +FS2 ; Nornmalize the S register
Note: Comments preceded by an underscore and an asterisk
are included in the definition bodies of the following macro
examples. These comments are included to illustrate the way
in which parameters are passed from the macro call to the
macro definition. Because comments are not assembled, *
comments allow arguments to be shown without regard to
hardware differences or available machine instructions.
The following examples show the use of positional-parameters
and keyword-parameters.
The macro t abl e contains positional and keyword parameters.
nacr o
tabl e t abn, val 1=#0, val 2=, val 3=0
tabl es section dat a
t abn con ‘tabn’ 1
con val 1
con val 2
con val 3
section * . Resume use of previous section.
table endm
list mac
144 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The following shows the call and expansion of the t abl e macro:

t abl e t aba, val 3=4, val 2=a : Macro call
t abl es section dat a
t aba con ‘taba’' 1l
con #0
con a
con 4
section * . Resume use of previous section.

Macro noor der demonstrates that keyword-parameters are not
order dependent.

macr o
noor der par ani, par an, par an8=, par amd=b
sl par aml
s2 par anf
s3 par anB
s4 par amd
noor der endm
list nmac
The call and expansion of the noor der macro is as follows:
noor der (1), 2, par and=dog, par an3=d
sl 1
s2 2
s3 d
s4 dog

SR-3108 9.1 Cray Research, Inc. 145

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Macros ONE, t wo, and THREE demonstrate that the number of
parameters specified in the macro call may form the number of
parameters specified in the macro definition.

MACRO
ONE PARAML, PARAMZ, PARAMB
_*PARAVETERL: PARAML
; SYML corresponds to PARAML.
_*PARAVETERZ: PARAM2
; Null string.
_*PARAVETERS: PARAMB
7 Null string.
ONE ENDM
LI ST MAC
The call and expansion of the ONE macro using one parameter is
as follows:
ONE SYML ; Call using one paraneter.
* PARAMETER 1. SYML ; SYML corresponds to PARAML.
* PARAMETER 2: 7 Null string.
* PARAMETER 3: 7 Null string.
macr o
t wo par amil, par an®, par anf
_* Paraneter 1: par aml
; SYML corresponds to paranil.
_* Paraneter 2: par an®
; SYMR corresponds to parang.
_* Paraneter 3: par an8
7 Null string.
t wo endm
list mac

146 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The call and expansion of the t wo macro using two parameters

is as follows:

t wo symi, syn® ; Call using two paraneters.
* Paranmeter 1: syml ; syml corresponds to paramtl.
* Paranmeter 2: syn2 ; synR corresponds to parang.
* Paraneter 3: ; Null string.
MACRO
THREE PARAML, PARAMZ2, PARAMS
_*PARAMETER 1: PARAML
; SYML corresponds to PARAML.
_*PARAMETER 2: PARAM?
; SYM2 corresponds to PARAMZ.
_*PARAMETER 3: PARAMB
; SYMB corresponds to PARAMS.
THREE ENDM
LIST MAC

The call and expansion of the THREE macro using prototype
parameters is as follows:

THREE SYML, SYM2, SYM3 ; Call matching prototype.

* PARAMETER 1: SYML ; SYML corresponds to PARAML.
PARAMETER 2: SYM2 ; SYM2 corresponds to PARAMZ.
* PARAMETER 3: SYM3 ; SYM3 corresponds to PARAMS.

SR-3108 9.1 Cray Research, Inc.

147

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following examples demonstrate the use of the optional ! .

Macro BANG demonstrates the use of the embedded argument
(1, 2), syntactically valid expressions for positional-parameters
(‘ abc, def '), keyword-parameters (PARAMB=1+2), and the null

string.
MACRO
BANG PARAM , ! PARAMZ, | PARAM3=, PARAMA=
_* PARAMETER 1: PARAML
; Enmbedded ar gumnent.
_* PARAMETER 2: PARAMR
; Syntactically valid expression
_* PARAMETER 3: PARAMB
; Syntactically valid expression
_* PARAMETER 4: PARAMA
7 Null string.
BANG ENDM
LIST MAC

The call and expansion of the BANGmacro is as follows:

BANG (1, 2), " abc, def’, PARAMB=1+2
; Macro call.
* PARAMETER 1: 1,2 ; Enbedded argunent.
* PARAMETER 2: ‘abc, def”’
; Syntactically valid expression.
PARAMVETER 3: 1+2 ; Syntactically valid expression.
* PARAMETER 4: ; Null string.

In the previous example:

» If the argument for PARAML had been (((1, 2))), S1 would
have received ((1, 2)) at expansion.

* The ! specified on PARAM2 and PARAM3 permits commas
and spaces to be embedded within strings ' abc, def’ and
allows expressions to be expanded without evaluation
1+2.

» PARAMA passes a null string. A space or comma following
the equal sign specifies a null or empty character string as
the default argument.

148 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

In the following macro, called r emem the ! is remembered from
the macro definition when it is called:

macr o
remem !paranil=" 'r ; Prototype statenent includes !
sl par amil
remem endm
list mac
The call and expansion of the r ememmacro is as follows:
remem paraml=",’r : Macro call does not include !
sl L
The NULL and nul | par mmacros that follow demonstrate the
effect of null strings when parameters are passed.
NULL demonstrates the effect of a null string on macro
expansions. P2 is passed a null string. When NULL is expanded,
the resulting line is left-shifted two spaces, which is the
difference between the length of the parameter (P2) and the null
string.
MACRO
NULL P1, P2, P3
S1 P1
S2 P2 ; Left shifted two pl aces.
S3 P3
NULL ENDM
LI ST MAC
The call and expansion of the NULL macro is as follows:
NULL 1,,3 : Macro call.
S1 1
* S2 ; Left shifted two pl aces.
S3 3
SR-3108 9.1 Cray Research, Inc. 149

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Macro nul | par mdemonstrates how a macro is expanded when
the macro call does not include the location field name specified
on the macro definition.

macr o

nul | parm | ongpar m

; Prototype statenent.

| ongparm= 1
nul | par mendm

list mac

The call and expansion of the nul par mmacro is as follows:

nul | parm

= 1

150

Note: The location field parameter was omitted on the macro
call in the previous example. The result and operand fields of
the first line of the expansion were shifted left 8 character
positions because a null argument was substituted for the
8-character parameter, LONGPARM

If the old format is used, only one space appears between the
location field parameter and result field in the macro
definition. If a null argument is substituted for the location
parameter, the result field is shifted into the location field in
column 2. Therefore, at least two spaces should always
appear between a parameter in the location field and the first
character in the result field in a definition.

If the new format is used, the result field is never shifted into
the location field.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The following macro, DEFAULT, illustrates how defaults are
assigned for keywords when the macro is expanded:

MACRO
DEFAULT PARAML=(ABC DEF, GH), PARAM2=ABC, PARAMB=
_* PARAM 1
_* PARAM 2
_* PARAM 3
DEFAULT ENDM
LI ST MAC
The following illustrates calls and expansions of the DEFAULT
macro:
DEFAULT PARAML=ARGL, PARAMP=ARRX2, PARAMB=ARG3
: Macro call.
* ARGL
* ARG2
* ARG3
DEFAULT PARAML=, PARAM2=(ARX2) , PARAMB=ARG3
* ARG2
* ARG3
DEFAULT PARAML=((ARGL)) , PARAM2=, PARAMB=ARG3
: Macro call.
* (* ARG:L)
* ARG3
The following examples illustrate the correct and incorrect way
to specify a literal string in a macro definition.
Macro WRONG shows the incorrect way to specify a literal string
in a macro definition. The comments in the expansion are writer
comments and are not part of the expansion.
MACRO
VWRONG PARAML=" 'R ; Prototype statenent.
_* PARAML
VWRONG ENDM ; End of macro definition.
LIST MAC ; List expansion.

SR-3108 9.1 Cray Research, Inc. 151

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The call and expansion of WRONG s as follows (CAL erroneously
expands WVRONG, ' ' Rwas intended):

WRONG : Macro call

Macro ri ght shows the correct way to specify a literal string in
a macro definition.

nacr o
right !paraml=" 'r ; Prototype statenent.
* paraml
right endm ; End of macro definition.
list nac ; List expansion.
The expansion of right is as follows (CAL expands ri ght as
intended because of the !):
right ; Macro call.
x !) r
The following macros demonstrate the wrong and right methods
for replacing parameters on the prototype statement with
parameters on the macro call statement.
Macro BAD demonstrates the wrong method of replacing
parameters.
MACRO
BAD PARAML, PARAMR2, PARAMB=JJJ
PARAMETER 1: PARAML
* PARAMETER 2: PARAMR
* PARAMETER 3: PARAMB
BAD ENDM ; End of macro definition.
LI ST MAC ; Listing expansion.

152 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The call and expansion of the BAD macro is as follows:

BAD PARANMB=XKK : Macro call.
* PARAMETER 1: PARAMB=KKK
* PARAMVETER 2:
* PARAMETER 3: JJJ

Macro good demonstrates the correct method for replacing

parameters.
macr o
good par ani, par an, paranB=j j |
_* paraneter 1: par amil
; Null string.
_* paraneter 2: par an
; Null string.
_* paraneter 3: par anB
good endm . BEnd of nmcro definition.
list nac ; Listing expansion.
The call and expansion of the good macro is as follows:
good , , par amB=kkk ; Macro call.
* paraneter 1: ; Null string.
* paraneter 2: ; Null string.
* paraneter 3: kkk

Macro ALPHA demonstrates the specification of an embedded

parameter.

MACRO ; EDI T=ON

ALPHA | PARAM ; Appendi ng a string.
_* FORVAL PARM PARAM
_* EMBEDDED PARM ABC PARAM DEFG

; Concatenation off at call tine.

ALPHA ENDM . End of nmcro definition.

LI ST MAC ; List expansion.

SR-3108 9.1 Cray Research, Inc. 153

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The call and expansion of the ALPHA macro is as follows:

ALPHA 1
* FORVAL PARM
* EMBEDDED PARM

: Macro call .
1
ABC1DEFG

Operation

definitions (OPDEF)
6.3

154

CAL processes the embedded parameter in macro ALPHA, as
follows:

1. CAL scans the string to identify the parameter. ABC_ cannot
be a parameter because the underscore character is not
defined as an identifier character for a parameter.

2. CAL identifies PARAMas the parameter when the second
underscore character is encountered.

3. 1 is substituted for PARAM producing string ABC_1 DEFG

4. If editing is enabled, the underscore characters are removed
and the resulting string is ABCl DEFG

If editing is disabled, the string is ABC_1_DEFG

5. CAL processes the statement.

An operation definition (OPDEF) identifies a sequence of
statements to be called later in the source program by an opdef
call. Each time the opdef call occurs, the definition sequence is
placed into the source program.

Opdefs resemble machine instructions and can be used to define
new machine instructions or to redefine current machine
instructions. Machine instructions map into opcodes that
represent some hardware operation. When an operation is
required that is not available through the hardware, an opdef
can be written to perform that operation. When the opdef is
called, the opdef maps into the opdef definition body and the
operation is performed by the defined sequence specified in the
definition body.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

SR-3108 9.1

You can replace any existing CAL machine instruction with an
opdef. Although opdef definitions should conform to meaningful
operations that are supported by the hardware, they are not
restricted to such operations.

The opdef definition sets up the parameters into which the
arguments specified in the opdef call are substituted. Opdef
parameters are always expressed in terms of registers or
expressions. The opdef call passes arguments to the parameters
in the opdef definition. The syntax for the opdef definition and
the opdef call are identical with two exceptions:

¢ The complex register has been redefined for the opdef
definition prototype statement as follows:

register_mnemonic. register_parameter

« Expressions have been redefined for the opdef definition
prototype statement, as follows:

@expression_parameter]

These two exceptions allow you to specify parameters in the
place of registers and expressions for an opdef definition.

The syntax defining a register_parameter and an
expression_parameter is case-sensitive. Every character that
identifies the parameter in the opdef prototype statement must
be identical to every character in the body of the opdef definition.
This includes the case (uppercase, lowercase, or mixed case) of
each character.

Because the opdef can accept arguments in many forms, it can
be more flexible than a macro. Opdefs place a greater
responsibility for parsing arguments on the assembler. When a
macro is specified, the responsibility for parsing arguments is
placed on the user in many cases. Parsing a macro argument
can involve numerous micro substitutions, which greatly
increase the number of statements required to perform a similar
operation with an opdef.

Cray Research, Inc. 155

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Defined sequences (macros, opdefs, dups, and echos) are costly in
terms of assembler efficiency. As the number of statements in a
defined sequence increases, the speed of the assembler
decreases. This decrease in speed is directly related to the
number of statements expanded and the number of times a
defined sequence is called.

Limiting the number of statements in a defined sequence
improves the performance of the assembler. In some cases, an
opdef can perform the same operation as a macro and use fewer
statements in the process.

The following example illustrates that an opdef can accept many
different kinds of arguments from the opdef call:

MANYCALL OPDEF
A. REGL A REG! A. REG3
; Opdef prototype statenent.
S1 A. REGQ2
S2 A REG3
S3 S1! S2
A. REGL S3 ; OR of registers S1 and S2.
MANYCALL ENDM ; End of opdef definition.
156 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The following example illustrates the calls and expansions of the
previous example:

Al A2! A3 ; First call to opdef MANYCALL.
Sl A 2
S2 A3
S3 S1! S2
Al S3 ; OR of registers S1 and S2.
Al A 21A 3 ; Second call to opdef MANYCALL.
Sl A 2
S2 A3
S3 S1! S2
Al S3 ; OR of registers S1 and S2.
ONE = 1 ; Define synbols.
TWO = 2
THREE = 3
A .ONE A TWO A THREE ; Third call to opdef MANYCALL.
S1 A 2
S2 A 3
S3 S1! s2
A .ONE S3 ; OR of registers S1 and S2.
Al A 2! AL THREE ; Fourth call to opdef MANYCALL.
S1 A2
S2 A 3
S3 S1! 82
Al s3 ; OR of registers S1 and S2.
In the first and second calls to opdef MANYCALL, the arguments
passed to REGL, REG2, and REG3 are 1, 2, and 3, respectively. In
the third call to opdef MANYCALL, the arguments passed to
REGL, REQ2, and REG3 are ONE, TWO, and THREE, respectively.
The fourth call to opdef MANYCALL demonstrates that the form
of the arguments can vary within one call to an opdef if they
take a valid form. The arguments passed to REGL, REG2, and
REG3 in the fourth call are 1, 2, and THREE, respectively.
SR-3108 9.1 Cray Research, Inc. 157

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following example illustrates how to use an opdef to limit
the number of statements required in a defined sequence:

MACRO
$IF REGL, COND, REG2 ; Macro prototype statenent.

$IF ENDM . End of macro definition.
$IF S6, EQ S. 3 ; Macro call.
$ELSE

$ENDI F

Parsing the parameters (S6, EQ S3) passed to the definition
requires many micro substitutions within the definition body.
These micros increase the number of statements within the
definition body.

The same function is performed in the following example, but an
opdef is specified instead of a macro. In this instance, specifying
an opdef rather than a macro reduces the number of statements
required for the function.

Because an opdef is called by its form, it is more flexible than a
macro in accepting arguments. The opdef expects to be passed
two S registers and the EQmnemonic. You can specify the
arguments for the registers in a number of ways and still be
recognized as S register arguments by the opdef.

opdef
exanple $if s.regl,eq,s.reg2; Opdef definition statenent.
_* Registerl: regl
_* Register2: reg2
exanpl e endm ; End of opdef definition.
list mac ; Listing expansion.

158 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The following are the calls and expansions of the preceding
example:

$i f
* Registerl:
* Regi ster2:

6
3

s6,eq,s.3

If an opdef occurs within the global definitions part of a program
segment, it is defined as global. Opdef definitions are local if
they occur within a program module (an | DENT, END sequence).
A global definition can be redefined locally, but the global
definition is reenabled and the local definition is discarded at the
end of the program module. You can reference a global definition
anywhere within an assembler program after it has been
defined.

You can specify the OPDEF pseudo instruction anywhere within a
program segment. If the OPDEF pseudo instruction is found
within a definition, it is defined. If the OPDEF pseudo instruction
is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

In the following example, the operand and comment fields of the
expanded line are shifted two positions to the left (difference
between r eg and 1):

exanpl e opdef

s.reg @xp ; Prototype statenent.
a.reg @xp ; New nachine instruction.
exanmpl e endm ; End of opdef definition.

l'i st mac ; Listing expansion.
The following are the calls and expansions of the preceding
example:

sl 2 ; Opdef call.

a.l 2 ; New machi ne instruction.

SR-3108 9.1

Cray Research, Inc. 159

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Opdef definition The OPDEF pseudo instruction is the first statement of an opdef

6.3.1 definition. Although an opdefis constructed much like a macro,
an opdef'is defined by an opdef statement, not by a functional
name.

Opdef syntax is uniquely defined on the result field alone, in
which case, the operand field is not specified or on the result and
operand fields. The OPDEF prototype permits up to three
subfields within the result and operand fields. At least one field
must be present within the result field. No fields are required in
the operand field.

The syntax for each of the subfields within the result and
operand fields of the opdef prototype statement is identical. No
special syntax forms exist for any of the subfields. The rules
that apply for the first subfield in the result field apply to the
remainder of the subfields within the result field and to all
subfields within the operand field.

The format of the opdef definition is as follows:

name OPDEF
[loc] defsynres defsynop

LOCAL [name]l,[namel]]
name ENDM

The variables in the opdef definition are described as follows:
s name

name identifies the opdef definition and has no association
with functionals that appear in the result field of instructions.
name must match the name in the location field of the ENDM
pseudo instruction, which ends the definition.

« Joc

loc specifies an optional location field parameter. loc must
meet the requirements for names as described in subsection
4.2, page 67.

160 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

» defsynres

defsynres specifies the definition syntax for the result field. It
can be one, two, or three subfields specifying a valid result
field syntax. The result field must be a symbolic.

Valid result subfields for opdefs can be one of the following:
— Initial register

— Mnemonic

— Initial expression

To specify an initial register on the opdef prototype statement,
use one of the following four syntax forms for initial-registers:

[prefix] [register—prefix] registerlregister-separator{register-endingl]

[prefix] [register-prefix] register[register-expression-separator [register-ending]]
[prefix] [register-prefix] register[register-expression-separator lexpression-ending]]
[prefix] [register-prefix] register[special-register-separator [register-ending]]

The elements of an initial register definition are as follows:
— prefix

prefix is optional and can be either a right parenthesis (() or
a right bracket (]).

SR-3108 9.1 Cray Research, Inc. 161

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

162

— register-prefix

register-prefix is optional and case-sensitive. When a
register-prefix is specified on an opdef call, it is recognized
by the opdef definition without regard to the case
(uppercase or lowercase) in which it was entered. It can be
specified as any of the following characters:

> #< #> # #F #f #H
#l #i #P #p #Q #q #R
#Z #z + +F +f +H +h
+i +P +p +Q +q +R +r
+z - -F —f -H —-h —I
—-P -p” -Q —q -R —r —Z
* * F *f * H * h * I * |
*p *Q *q *R *p *7 * 7
I F /f /H /'h /1 li /P
I Q /q IR Ir 1z lz F
H h I [P p Q
R r z z

— register

register is required. It can be any simple or complex
register. Simple registers are any of the following:

CA, CE, Cl, CL, MC, RT, SB, SM VL, VMor XA

The complex registers are designated in the opdef definition
in the form: register designator.register parameter. The
register_designator for complex registers can be any of the
following:

A, B, SB,SM SR ST, S, Tor V

The register-parameter is a 1- to 8-character identifier
composed of identifier characters.

When you specify a simple register or a complex register
mnemonic on an opdef call, it is recognized by the opdef
definition without regard to the case (uppercase, lowercase,
or mixed case) in which it was entered.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

— register-separator

register-separator is optional and case-sensitive. It can be
one of the following (when a register separator is specified
on an opdef call, it is recognized by the opdef definition
without regard to the case):

+F +f +H +h +| +i +P +p
+Q +q +R +r +Z +7
-F —f —H —h —I —i -P -p
-Q —q -R —r —Z A
= *f *H *N *| *j *p *p
*Q *q *R *y *7 * 7
I F /f /I H /h /1 i /P /p
/1 Q /q /R /r /Z /z

— register-expression-separator

The optional register-expression-separator can be designated
by any of the following:

),1,& !\, #<, #>,<,>,+,—,* or/
— special-register-separator
The optional special-register-separator is specified as #.
— register-ending

The optional register-ending is specified using one of the
following three syntax forms:

registery [register-separator [registery [suffix 111
register | register-expression-separator [register-or-expression [suffix 111
registery [special-register-separator [registers [suffix 1]

The register; register-separator, registers, suffix, register,
and register-expression-separator elements are described
previously under initial-register.

The optional register-or-expression can be a register or an
expression. If register is not specified, expression is
required. If expression is not specified, register is required.

SR-3108 9.1 Cray Research, Inc. 163

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

expression has been redefined for the opdef prototype
statement, as expression-parameter. expression-parameter is
an identifier that must begin with the at symbol (@. The @
can be followed by 0 to 7 identifier characters.

special-register-separator is specified as #.
— expression-ending

expression-ending is specified as follows:

expression [expression_separator [register-or-expression [suffix 11

expression is required and has been redefined for the opdef
prototype statement, as follows:

expression-parameter

expression-parameter is an identifier that must begin with
the at symbol (@. The @can be followed by 0 to 7 identifier
characters.

expression-separator can be one of the following:
)’] ,&,!,\,=,#<,0r#>

The optional register-or-expression can be a register or an
expression. If register is not specified, expression is
required. If expression is not specified, register is required.

A mnemonic is a 1- to 8-character identifier that must begin
with a letter (A through Z or a through z), a decimal digit (0
through 9), or one of the following characters: $, % &, , *, +,

—.,01,,=?2,\,",],or ~. Optional characters 2 through 8
can be the at symbol (@ or any of the previously mentioned
characters.

Initial-expression specifies an initial-expression on the opdef
prototype statement, use one of the following syntax forms for
initial-expressions:

[prefixl [expression-prefix] expression [expression-separator [register-endingl]
[prefix] [expression-prefix] expression [expression-separator [expression-ending]]
expression | expression-separator [register-endingl]

expression [expression-separator [expression-ending]]

164 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The elements of the initial expression are described as follows:

— prefix

prefix is optional and can be either a right parenthesis (() or
a right bracket (]).

— expression-prefix
expression-prefix is optional and can be any of the following:
<, >, #<, or #>
— expression

expression is required and has been redefined for the opdef
prototype statement, as follows:

expression-parameter

expression-parameter is an identifier that must begin with
the at symbol (@). The @can be followed from 0 to 7
identifier characters.

— expression-separator

expression-separator is optional and can be one of the
following:

)7] 7&7!7\7<’>7#<70r#>
— register-ending and expression-ending

register-ending and expression-ending are the same for
initial expressions as for initial registers.

» defsynop

Definition syntax for the operand field; can be zero, one, or two
subfields specifying a valid operand field syntax. If a subfield
exists in the result field, the first subfield in the operand field
must be a symbolic.

The definition syntax for the operand field of an opdef is the
same as the definition syntax for the result field of an opdef.
See the definition of defsynres, earlier in this subsection.

SR-3108 9.1 Cray Research, Inc. 165

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Opdef calls
6.3.2

166

An opdef definition is called by an instruction that matches the
syntax of the result and operand fields as specified in the opdef
prototype statement.

The arguments on the opdef call are passed to the parameters on
the opdef prototype statement. The special syntax for registers
and expressions that was required on the opdef definition does
not extend to the opdef call.

The format of the opdef call is as follows:

locarg callsynres callsynop

The variables associated with the opdef call are described as
follows:

» locarg

locarg is an optional location field argument. It can consist of
any characters and is terminated by a space (embedded spaces
are illegal).

If a location field parameter is specified on the opdef
definition, a matching location field parameter can be specified
on the opdef call. locarg is substituted wherever the location
field parameter occurs in the definition. If no location field
parameter is specified in the definition, this field must be
empty.

callsynres

callsynres specifies the result field syntax for the opdef call. It
can consist of one, two, or three subfields and must have the
same syntax as specified in the result field of the opdef
definition prototype statement.

The syntax of the result field call is the same as the syntax of
the result field definition with two exceptions. The special
syntax rules that are in effect for registers and expressions on
the opdef definition do not apply to the opdef call. The syntax
for registers and expressions used on the opdef call is the same
as the syntax for registers and expressions.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

SR-3108 9.1

The subfields in the result field on the opdef call can be
specified with one of the following:

— Initial-register
— Mnemonic

— Initial-expression

For a description of the syntax for the result field of the opdef
call, see the syntax for the result field of the opdef definition.

callsynop

callsynop specifies the operand field syntax for the opdef call.
It can consist of zero, one, two, or three subfields, and it must
have the same syntax as specified in the operand field of the
opdef definition prototype statement.

The syntax of the operand field call is the same as the syntax
of the operand field definition with two exceptions. The
special syntax rules that are in effect for registers and
expressions on the opdef definition do not apply to the opdef
call. The syntax for registers and expressions used on the
opdef call is the same as the syntax for registers and
expressions.

The subfields in the operand field on the opdef call can be
specified with one of the following:

— Initial-register

— Mnemonic

— Initial-expression

For a description of the syntax for the operand field of the

opdef call, see the syntax for the result field of the opdef
definition.

The following rules apply for opdef calls:

» The character strings callsynres and callsynop must be exactly

as specified in the opdef definition.

« An expression must appear whenever an expression in the

form @xp is indicated in the prototype statement. The actual

argument string is substituted in the definition sequence
wherever the corresponding formal parameter @xp occurs.

Cray Research, Inc.

167

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The actual argument string consisting of a complex-register
mnemonic followed by a period (.) followed by a
register-parameter. A register-designator followed by a
register-parameter must appear wherever the
register-designator A. register-parameter, B. register-parameter,
SB. register-parameter, S. register-parameter,

T. register-parameter, ST. register-parameter,

SM register-parameter, or V. register-parameter, respectively,
appeared in the prototype statement.

— If the register-parameter is of the form octal-integer, the
actual argument is the octal-integer part. The octal-integer
is restricted to 4 octal digits.

— If the register-parameter is of the form
. integer-constant or . symbol, the actual argument is an
integer-constant or a symbol.

The following opdef definition shows a scalar floating-point
divide sequence:

fdv opdef

L s.rl
errif
errif

L s.rl
s.r2
s.r3
s.rl

fdv endm

s.r2/fs.r3
ri,eq,r2
rl,eq,r3
/hs.r3
s.r2*fs.rl
s.r3*is.rl
s.r2*fs.r3

; Scal ar floating-point divide prototype
; Sstatenent.

The following example illustrates the opdef call and expansion of

the preceding example:
a s4 s3/fs2 ; Divide s3 by s2, result to s4.
errif 4,eq,3
errif 4,eq,?2
a s. 4 /hs. 2
s.3 s.3*fs. 4
s.2 S.2%is. 4
s. 4 s.3*fs. 2
168 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The following opdef definition, call, and expansion define a
conditional jump where a jump occurs if the A register values
are equal:

JEQ OPDEF

L JEQ A AL, A A2, @AG ; Opdef prototype statenent.

L A0 A Al-A A2

_* JAZ @rAG ; Expression is expected.

JEQ ENDM ; End of opdef definition.
LI ST MAC ; Listing expansion.

The following example illustrates the opdef call and expansion of
the preceding example (The expansion starts on line 2.):

JEQ A3, A6, GO
AO A3—-A5
* JAZ @&

; Opdef call.

; Expression is expected.

The opdef in the following example illustrates how an opdef can
redefine an existing machine instruction:

EXAMPLE OPDEF
S. REG @XP ; Opdef protype instruction.
A. REG @XP ; New instruction.
EXAMPLE ENDM ; End of opdef definition.
LI ST MAC ; Listing expansion.
The following example illustrates the opdef call and expansion of
the preceding example:
S1 2 ; Opdef call.
Al 2 ; New i nstruction.

SR-3108 9.1

Cray Research, Inc. 169

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following example demonstrates how the expansion of an
opdef is affected when the opdef call does not include a label that
was specified in the opdef definition:

regchg opdef

| bl s.regl s.reg2
*

| bl =

s.reg2 s.regl

regchg endm

; Opdef prototype statenent.

; Left—shift if Ibl is left off.
; Register s2 gets register sl.
; End of opdef definition.

list mac ; Listing expansion.
The following example illustrates the opdef call and expansion of
the preceding example:
sl s2 ; Opdef call.
= * ; Left—shift if Ibl is left off.
s.2 s.1 ; Register s2 gets register sl.

170

The location field parameter was omitted on the opdef call in the
previous example. The result and operand fields of the first line
of the expansion were shifted left three character positions
because a null argument was substituted for the 3-character
parameter, | bl .

If the old format is used, only one space appears between the
location field parameter and result field in the macro definition.
If a null argument is substituted for the location parameter, the
result field is shifted into the location field in column 2.
Therefore, at least two spaces should always appear between a
parameter in the location field and the first character in the
result field in a definition.

If the new format is used, the result field is never shifted into
the location field.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The following example illustrates the case insensitivity of the
register and register-prefix:

CASE OPDEF
S1 #Pa2 ; Prototype statenent.
CASE ENDM
The following example illustrates the opdef calls of the preceding
example:
Sl #pa2 ; Recogni zed by CASE.
Sl #Pa2 ; Recogni zed by CASE.
Sl #pA2 ; Recogni zed by CASE.
S1 #PA2 ; Recogni zed by CASE.
sl #pa2 ; Recogni zed by CASE.
sl #Pa2 ; Recogni zed by CASE.
sl #pA2 ; Recogni zed by CASE.
sl #PA2 ; Recogni zed by CASE.

Duplication (DUP)

6.4

SR-3108 9.1

The DUP pseudo instruction defines a sequence of code that is
assembled repetitively immediately following the definition. The
sequence of code is assembled the number of times specified on
the DUP pseudo instruction. The sequence of code to be repeated
consists of the statements following the DUP pseudo instruction
and any optional LOCAL pseudo instructions. Comment
statements are ignored. The sequence to be duplicated ends
when the statement count is exhausted or when an ENDDUP
pseudo instruction with a matching location field name is
encountered.

The DUP pseudo instruction only accepts one type of formal
parameter. That parameter must be specified with the LOCAL
pseudo instruction.

Cray Research, Inc. 171

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

172

You can specify the DUP pseudo instruction anywhere within a
program segment. If the DUP pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the DUP pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the DUP pseudo instruction is as follows:

[dupname] DUP expression|, [count]]

The variables associated with the DUP pseudo instruction are
described as follows:

» dupname

dupname specifies an optional name for the dup sequence. It
is required if the count field is null or missing. If no count
field is present, dupname must match an ENDDUP name. The
sequence field in the DUP pseudo instruction itself represents
the nested dup level and appears in columns 89 and 90 on the
listing. For a description of sequence field nest level
numbering, see subsection 6.1, page 128.

The dupname variable must meet the requirements for names
as described in subsection 4.2, page 67.

» expression

expression is an absolute expression with a positive value that
specifies the number of times to repeat the code sequence. All
symbols, if any, must be defined previously. If the current base
is mixed, octal is used for the expression. If the value is 0, the
code is skipped. You can use a STOPDUP to override the given
expression.

The expression operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

e count

count is an optional absolute expression with positive value
that specifies the number of statements to be duplicated. All
symbols (if any) must be defined previously. If the current
base is mixed, octal is used for the expression.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences

[6]

LOCAL pseudo instructions and comment statements (* in
column 1) are ignored for the purpose of this count.
Statements are counted before expansion of nested macro or
opdef calls, and dup or echo sequences.

The count operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

In the following example, the code sequence following the DUP
pseudo instruction will be repeated 3 times. There are 5
statements in the sequence.

DUP 3,5

LOCAL SYML, SYMR X
*Ast eri sk comment; not counted

S1 1 ;
*Asteri sk comment; not counted

| NCLUDE ALPHA ;

LOCAL pseudo instruction not counted.
First statement is definition.

I NCLUDE pseudo instruction not
count ed.

The following is the file, ALPHA:

S2 3 ; Second statenent in definition.
sS4 4 ; Third statenent in definition.
*Ast eri sk comment; not counted
S5 5 ; Fourth statenent in definition.
S6 6 ; Fifth statenent in definition.
In the following example, the two con pseudo instructions are
duplicated three times immediately following the definition:
list dup
exanpl e dup 3 ; Definition.
con 1
con 2

exanmpl e enddup

SR-3108 9.1 Cray Research, Inc.

173

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following example illustrates the expansion of the preceding
example:

con
con
con
con
con
con

NFENEDNPRE

Duplicate with The ECHO pseudo instruction defines a sequence of code that is

varying argument assgmbled Zero or more tl.m'es immediately following the
definition. On each repetition, the actual arguments are

(ECHO) substituted for the formal parameters until the longest

6.5 argument list is exhausted. Null strings are substituted for the
formal parameters after shorter argument lists are exhausted.
The echo sequence to be repeated consists of statements
following the ECHO pseudo instruction and any optional LOCAL
pseudo instructions. Comment statements are ignored. The
echo sequence ends with an ENDDUP that has a matching
location field name.

You can use the STOPDUP pseudo instruction to override the
repetition count determined by the number of arguments in the
longest argument list.

You can specify the ECHO pseudo instruction anywhere within a
program segment. If the ECHO pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the ECHO pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ECHO pseudo instruction is as follows:

dupname ECHO [name=argumentll, [name=argument]]

174 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The variables associated with the ECHO pseudo instruction are
described as follows:

» dupname

dupname specifies the required name of the echo sequence. It
must match the location field name in the ENDDUP instruction
that terminates the echo sequence. dupname must meet the
requirements for names as described in subsection 4.2, page
67.

* name

name specifies the formal parameter name. It must be unique.
There can be none, one, or more formal parameters. name
must meet the requirements for names as described in
subsection 4.2, page 67.

* argument

argument specifies a list of actual arguments. The list can be
one argument or a parenthesized list of arguments.

A single argument is any ASCII character up to but not
including the element separator, a space, a tab (new format
only), or a semicolon (new format only). The first character
cannot be a left parenthesis.

A parenthesized list can be a list of one or more actual
arguments. Each actual argument can be one of the following:

— An ASCII character string can contain embedded
arguments. If, however, an ASCII string is intended, the
first character in the string cannot be a left parenthesis. A
legal ASCII string is 4(5). An illegal ASCII string is (5)4(5).

— A null argument; an empty ASCII character string.

— An embedded argument that contains a list of arguments
enclosed in matching parentheses. An embedded argument
can contain blanks or commas and matched pairs of
parentheses. The outermost parentheses are always
stripped from an embedded argument when an echo
definition is expanded.

An embedded argument must meet the requirements for
embedded arguments as described in subsection 4.7, page
94,

SR-3108 9.1 Cray Research, Inc. 175

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

In the following example, the ECHO pseudo instruction is
expanded twice immediately following the definition:

LI ST
EXAMPLE ECHO

CON

CON

EXAMPLE ENDDUP

DuUP
PARAML=(1, 3) , PARAM2=(2, 4)
; Definition.
PARAML
; CGets 1 and 3.
PARANP

. Gets 2 and 4.

The following example illustrates the expansion of the preceding
example:

exanpl e echo

Exarrpl e enddup

_*Paraneter 1is:
*Paraneter 2 is:

CON 1 . Gets 1 and 3.

CON 2 ; Gets 2 and 4.

CON 3 ; Gets 1 and 3.

CON 3 . Gets 1 and 3.

CON 4 ; Gets 2 and 4.
In the following example, the echo pseudo instruction is
expanded once immediately following the definition with two
null arguments.

list dup

par anl=, par an2=()
; ECHOw th two null paraneters.
" par amt’
' par an’

The following illustrates the expansion of the preceding example:

*Paraneter 1 is:
*Paraneter 2 is:

176

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Ending a macro or
operation

definition (ENDM
6.6

Premature exit
from a macro

expansion (EXI TM
6.7

SR-3108 9.1

An ENDMpseudo instruction terminates the body of a macro or
opdef definition. If ENDMis used within a MACRO or OPDEF
definition with a different name, it has no effect.

You can specify the ENDMpseudo instruction only within a macro
or opdef definition. If the ENDMpseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ENDMpseudo instruction is as follows:

func ENDM ignored

The func variable associated with the ENDMpseudo instruction
identifies the name of the macro or opdef definition sequence. It
must be a valid identifier or the equal sign. func must match the
functional that appears in the result field of the macro prototype
or the location field name in an OPDEF instruction.

If the ENDMpseudo instruction is encountered within a definition
but func does not match the name of an opdef or the functional of
a macro, the ENDMinstruction is defined and does not terminate
the opdef or macro definition in which it is found. func must
meet the requirements for functionals.

The EXI TMpseudo instruction immediately terminates the
innermost nested macro or opdef expansion, if any, caused by
either a macro or an opdef call. If files were included within this
expansion and/or one or more dup or echo expansions are in
progress within the innermost macro or opdef expansion they
are also terminated immediately. If such an expansion does not
exist, the EXI TMpseudo instruction issues a caution level listing
message and does nothing.

You can specify the EXI TMpseudo instruction anywhere within a
program segment. If the EXI TMpseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the EXI TMpseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Cray Research, Inc. 177

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Ending duplicated

code (ENDDUP)
6.8

178

The format of the EXI TMpseudo instruction is as follows:

ignored EXI T™M ignored

In the following example of a macro call, the macro expansion is
terminated immediately by the EXI TMpseudo instruction and
the second comment is not included as part of the expansion:

nacr o
al pha
_*First comment
exitm
_*Second comment
al pha endm
list nac

The following example illustrates the expansion of the preceding
example:

al pha ;. Macro call
*First conmment
exitm

The ENDDUP pseudo instruction ends the definition of the code
sequence to be repeated. An ENDDUP pseudo instruction
terminates a dup or echo definition with the same name. If
ENDDUP is used within a DUP or ECHO definition with a different
location field name, it has no effect. ENDDUP has no effect on a

dup definition terminated by a statement count; in this case,
ENDDUP is counted.

The ENDDUP pseudo instruction is restricted to definitions (DUP
or ECHO). If the ENDDUP pseudo instruction is found on a MACRO
or OPDEF definition, it is defined and is not recognized as a
pseudo instruction. If the ENDDUP pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

Premature exit of
the current
iteration of
duplication
expansion

(NEXTDUP)
6.9

SR-3108 9.1

The format of the ENDDUP pseudo instruction is as follows:

dupname ENDDUP ignored

The dupname variable associated with the ENDDUP pseudo
instruction specifies the required name of a dup sequence.
dupname must meet the requirements for names as described in
subsection 4.2, page 67.

The NEXTDUP pseudo instruction stops the current iteration of a
duplication sequence indicated by a DUP or an ECHO pseudo
instruction. Assembly of the current repetition of the dup
sequence is terminated immediately and the next repetition, if
any, is begun.

Assembly of the current iteration of the innermost duplication
expansion with a matching location field name is terminated
immediately. If the location field name is not present, assembly
of the current iteration of the innermost duplication expansion is
terminated immediately.

If other dup, echo, macro, or opdef expansions were included
within the duplication expansion to be terminated, these
expansions are also terminated immediately. If a file also is
being included at expansion time within the duplication
expansion it is terminated immediately.

You can specify the NEXTDUP pseudo instruction anywhere
within a program segment. If the NEXTDUP pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the NEXTDUP pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo.

Cray Research, Inc. 179

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Stopping
duplication

(STOPDUP)
6.10

180

The format of the NEXTDUP pseudo instruction is as follows:

[dupname] NEXTDUP ignored

The optional dupname variable specifies the name of a dup
sequence. If the name is present but does not match any
existing duplication expansion, a caution-level listing message is
issued and the pseudo instruction does nothing. If the name is
not present and a duplication expansion does not currently exist,
a caution-level listing message is issued and the pseudo
instruction does nothing.

The STOPDUP pseudo instruction stops duplication of a code
sequence indicated by a DUP or ECHO pseudo instruction.
STOPDUP overrides the repetition count.

Assembly of the current dup sequence is terminated
immediately. STOPDUP terminates the innermost dup or echo
sequence with the same name as found in the location field. If
no location field name exists, STOPDUP will terminate the
innermost dup or echo sequence. STOPDUP does not affect the
definition of the code sequence that will be duplicated.

Assembly of the innermost duplication expansion with a
matching location field name is terminated immediately;
however, if the location field name is not present, assembly of
the innermost duplication expansion is terminated immediately.
If other dup, echo, macro, or opdef expansions were included
within the duplication expansion that will be terminated, these
expansions also are terminated immediately. If a file also is
being included at expansion time within the duplication
expansion that will be terminated, the inclusion of that file is
terminated immediately.

You can specify the STOPDUP pseudo instruction anywhere
within a program segment. If the STOPDUP pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the STOPDUP pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The format of the STOPDUP pseudo instruction is as follows:

[dupnamel STOPDUP ignored

The dupname variable associated with the STOPDUP pseudo
instruction specifies the name of a dup sequence. If the name is
present but does not match any existing duplication expansion,
or, if the name is not present and a duplication expansion does
not currently exist, a caution-level listing message is issued and
the pseudo instruction does nothing. dupname must meet the
requirements for names as described in subsection 4.2, page 67.

The following example uses a DUP pseudo instruction to define
an array with values 0, 1, and 2:

S = W
DuP 3,1
CON W*-S

The following illustrates the expansion of the preceding example:

CON W*-S
CON W*-S
CON W*-S

In the following example the ECHO and DUP pseudo instructions
define a nested duplication:

ECHO ECHO R =(A S), RIK=(B, T)
| SET 0
DUPI DUP 8
JK SET 0
DUPJK DUP 64

R RIK. JK
JK SET JK+1
DUPJK ENDDUP
| SET | +1
DUPl ENDDUP
ECHO ENDDUP

SR-3108 9.1 Cray Research, Inc. 181

Defined Sequences [6] Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Note: The following expansion is not generated by CAL, but
it is included to show the expansion of the previously nested
duplication expansion.

The following example illustrates the expansion of the preceding
example:

: In the first call of the echo, the A
; and B paraneters are used.

A0 B.0 ; DUPJK generates the A O gets register
; B.O through register A O gets register
; B.64 instructions.

A0 B. 64 ; DUPI increments the A register from
; A1l to A 7 for succeedi ng passes
; through DUPJK

Al B.0 ; DUPJK generates register A i gets
; register B.O through register A i gets
; register B.64 instructions.

A7 B. 64 ;1 is | to 7.
S.0 T.0 ; In the second expansion of the echo
; pseudo instruction the Sand T
; paraneters are used.
S.0 T. 64 ; DUPJK and DUPI generate the sane
; series of register instructions for
; the Sand T registers that were
. . ; generated for the A and B registers.
S. 8 T. 64
In the following example the STOPDUP pseudo instruction
terminates duplication:
LI ST DUP
T SET 0
A DUP 1000
T SET T+1
| FE T,EQ 3,1 ; Terminate duplication when T=3.
A STOPDUP
CON T
A ENDDUP

182 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The following example illustrates the expansion of the preceding

example:
T SET T+1
CON T
T SET T+1
CON T
T SET T+1
A STOPDUP

In the following example a STOPDUP pseudo instruction is used
to terminate a DUP immediately:

DNAVE DUP 3
_* First comment
STOPDUP

_* Second comment
DNAMVE ENDDUP

The following example illustrates the expansion of the preceding
example:

* First comment
STOPDUP

The following example is similar to the previous example except
NEXTDUP replaces STOPDUP. The current iteration is terminated
immediately when the NEXTDUP pseudo instruction is

encountered.
DNANE DUP 3
_* First comrent

NEXTDUP
_* Second comment
DNANMVE ENDDUP

SR-3108 9.1 Cray Research, Inc. 183

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Specifying local
unique character
string
replacements

(LOCAL)
6.11

184

The following example illustrates the expansion of the preceding
example:

* First comrent
NEXTDUP
* First comment
NEXTDUP
* First conmment
NEXTDUP

The LOCAL pseudo instruction specifies unique character string
replacements within a program segment that are defined only
within the macro, opdef, dup, or echo definition. These character
string replacements are known only in the macro, opdef, dup, or
echo at expansion time. The most common usage of the LOCAL
pseudo instruction is for defining symbols, but the LOCAL pseudo
instruction is not restricted to the definition of symbols. Local
pseudo instructions within a macro, opdef, dup, or echo header
are not part of the macro definition.

On each macro or opdef call and each repetition of a dup or echo
definition sequence, the assembler creates a unique 8-character
string (commonly used for the definition of symbols by the user)
for each local parameter and substitutes the created string for
the local parameter on each occurrence within the definition.
The unique character string created for local parameters has the
form Wmnnnnn; where n is a decimal digit.

Zero or more LOCAL pseudo instructions can appear in the
header of a macro, opdef, dup, or echo definition. The LOCAL
pseudo instructions must immediately follow the macro or opdef
prototype statement or DUP and ECHO pseudo instructions,
except for intervening comment statements.

You can specify the LOCAL pseudo instruction only within a
definition. If the LOCAL pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Defined Sequences [6]

The format of the LOCAL pseudo instruction is as follows:

ignored

LOCAL [namell, [namel]]

The name variable associated with the LOCAL pseudo instruction
specifies formal parameters that must be unique and will be
rendered local to the definition. name must meet the

requirements for names as described in subsection 4.2, page 67.

The following example demonstrates that all formal parameters
must be unique:

MACRO
UNl QUE PARM2 ; PARMZ is defined within UN QUE.
LOCAL PARML, PARM2 ; ERROR: PARM2 previously defined as a
; parameter in the macro prototype
; statenent.
UNI QUE ENDM
The following example demonstrates how a unique character
string is generated for each parameter defined by the LOCAL
pseudo instruction:
macr o
string
| ocal parani, paran® ; Not part of the definition body.
paraml = 1
sl par anil ; Register sl gets the val ue defined by
; paramtl.
paran = 2
s2 par an ; Register s2 gets the val ue defined by
; parang.
string endm : End of macro definition.
list nac ; Listing expansion.

SR-3108 9.1

Cray Research, Inc.

185

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

The following example illustrates the call and expansion from
the preceding example:

string
WR62144 =
sl

29431072 =
s2

: Macro call.

1

90262144
; Register sl gets the val ue defined by
; paraml.

2

99431072
; Register s2 gets the val ue defined by
; parant.

Synonymous

operations (OPSYN)

6.12

186

The call to the macro string generates unique strings for par ani
(99262144) and for par an? (¥%894.31072).

The OPSYN pseudo instruction defines an operation that is
synonymous with another macro or pseudo instruction
operation. The functional name in the location field is defined as
being the same as the functional name in the operand field. You
can redefine any pseudo instruction or macro in this manner.

The functional name in the location field can be a currently
defined macro or pseudo instruction in which case, the current
definition is replaced and a message is issued informing you that
a redefinition has occurred.

An operation defined by OPSYNis global if the OPSYN pseudo
instruction occurs within the global part of an assembler
segment, and it is local if the OPSYN pseudo instruction appears
within an assembler module of a segment. You can reference
global operations in any program segment following the
definition. Every local operation is removed at the end of a
program module, making any previous global definition with the
same name available again.

If the OPSYN pseudo instruction occurs within a definition, it is
defined and is not recognized as a pseudo instruction. If the
OPSYN pseudo instruction is found within a skipping sequence, it
is skipped and is not recognized as a pseudo instruction.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Defined Sequences [6]

The format of the OPSYN pseudo instruction is as follows:

funcl OPSYN [func2]

The funcl variable associated with the OPSYN pseudo instruction
specifies a required functional name. It must be a valid
functional name. The name of a defined operation such as a
pseudo instruction or macro, or the equal sign. funcl must not
be blank and must meet the requirements for functional names.

The func2 variable specifies an optional functional name. It
must be the name of a defined operation or the equal sign. If
func2 is blank, funcl becomes a do-nothing pseudo instruction.

In the following example, the macro definition includes the
OPSYN pseudo instruction that redefines the | DENT pseudo

instruction:
| DENTT OPSYN | DENT
M_EVEL ERROR; Elimnates the warning error that is
; issued because the | DENT pseudo
; instruction is redefined.
MACRO
| DENT NANVE
LI ST LI S, OFF, NXRF
NAME LI ST LI S, ON, XRF
; Processed if LIST=NAME on CAL control
; statenment.
| DENTT NANME
| DENT ENDM

The following example illustrates the OPSYN call and expansion
(The expansion starts on line 2.):

| DENT A
LI ST LI S, OFF, NXRF
A LI ST LI S, ON, XRF : Processed if LI ST=NAVME on CAL control
; statenment.
| DENTT A

SR-3108 9.1 Cray Research, Inc. 187

Defined Sequences [6]

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

In the following example, the f i r st macro illustrates that a
functional can be redefined many times:

macr o
first
sl 1
s2 2
s3 s1l+2
first endm
second opsyn first
; second is the sane as first.
third opsyn second
; third is the same as second.
The following example includes the Opdef calls and expansions
from the preceding example:
first : Macro call.
sl 1
s2 2
s3 s1+s2
second
sl 1
s2 2
s3 sl+s2
third
sl 1
s2 2
s3 s1+s2
In the following example, the functional EQUis defined to
perform the same operation as =:
EQU OPSYN = ; EQU is defined to
; performthe
; operation that the
; = pseudo
; instruction
; performs.
188 Cray Research, Inc. SR-3108 9.1

