Pseudo Instruction Descriptions [A]

This appendix lists the pseudo instructions presented
throughout section 5, page 117, in alphabetical order for easy
reference. The pseudo instructions are listed at the left margin.
The paragraphs to the right of each pseudo instruction name
describe the pseudo instruction.

Note: You can specify pseudo instructions in uppercase or
lowercase, but not in mixed case.

Throughout this appendix, pseudo instructions with ignored
fields (location or operand) are defined as follows:

ignored pseudox

ignored The assembler ignores the location field of this
statement. If the field is not empty and all of
the characters in the field are skipped until a
blank character is encountered, a caution-level
message is issued. The first nonblank
character following the blank character is
assumed to be the beginning of the result field.

pseudox Pseudo instruction with a blank location field.
pseudoy ignored

pseudoy Pseudo instruction with a blank operand field.

ignored The assembler ignores the location field of this

statement. If the field is not empty and all of
the characters in the field are skipped until a
blank character is encountered, a caution-level
message is issued. The first nonblank
character following the blank character is

assumed to be the beginning of the comment
field.

SR-3108 9.1 Cray Research, Inc. 189

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

= The equate symbol (=) when used as a pseudo instruction defines
a symbol with the value and attributes determined by the
expression. The symbol is not redefinable.

You can specify the = pseudo instruction anywhere within a
program segment. If the = pseudo instruction is found within a
definition, it is defined and is not recognized as a pseudo
instruction. If the = pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the = pseudo instruction is as follows:

[symbol] = expression|, [attribute]]

The symbol variable represents an optional unqualified symbol.
The symbol is implicitly qualified by the current qualifier. The
symbol must not be defined already. The location field can be
blank. symbol must satisfy the requirements for symbols as
described in subsection 4.3, page 69.

All symbols found within expression must have been previously
defined. The expression operand must meet the requirements for
an expression as described in subsection 4.7, page 94.

The attribute variable specifies a parcel (P), word (W, or value (V)
attribute. If present, it is used instead of the expression’s
attribute. If a parcel-address attribute is specified, an
expression with word-address attribute is multiplied by four; if
word-address attribute is specified, an expression with
parcel-address attribute is divided by four. You cannot specify a
relocatable expression as having value attribute.

In the following example, the symbol SYMB is assigned the value
of A*B+100/ 4. The following illustrates the use of the = pseudo
instruction:

SYMB = A*B+100/ 4

190 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

ALl GN

SR-3108 9.1

The ALI GN pseudo instruction ensures that the code following
the instruction is aligned on an instruction buffer boundary. An
offset is calculated to determine the next instruction buffer
boundary from the current location counter. The type of
machine for which CAL is targeting code (see the cpu=primary
option on the CAL invocation statement) determines the size of
the offset.

Machine type Octal offset (words/parcels)
CRAY C90 40/200
CRAY J90 40/200
CRAY T90 40/200
CRAY Y-MP 40/200

The calculated offset is added to the location and origin counters
within the currently enabled section. Code is not generated
within this offset. The offset is calculated relative to the
beginning of a section. When an ALI GN pseudo instruction is
encountered, the section relative to the current location counter
is aligned.

If the location counter is currently positioned at an instruction
buffer boundary, alignment is not performed. Ifthe section that
is being aligned has a type of STACK or TASK COVWMON or has a
location of local memory, a warning message is issued.

The ALI GN pseudo instruction is restricted to sections that have
a type of instruction, data, or both. If the ALI GN pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the ALI GN pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

The format of the ALI GN pseudo instruction is as follows:

[symbol] ALI GN ignored

The symbol variable is optional. It is assigned the parcel
address of the location counter after alignment. If the optional
symbol is specified in the location field, it is assigned the value
of the location counter and an attribute of parcel address after
alignment on the next instruction buffer boundary.

Cray Research, Inc. 191

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

BASE

192

symbol must meet the requirements for symbols as described in
subsection 4.3, page 69.

The octal value in the output listing immediately to the left of
the location field indicates the number of full parcels skipped.

The following example illustrates the use of the ALI GN pseudo
instruction:

The BASE pseudo instruction specifies the base of numeric data
as octal, decimal, or mixed when the base is not explicitly
specified by an O , D , or X' prefix. The default is decimal.

You can specify the BASE pseudo instruction anywhere in a
program segment. However, if the BASE pseudo instruction is
located within a definition or skipping section, it is not
recognized as a pseudo instruction.

The format of the BASE pseudo instruction is as follows:

ignored BASE option/*

The option variable specifies the numeric base of numeric data.
It is a required single character specified as follows:

e Ooro (Octal)
e Dord (Decimal)
« Mor m (Mixed)

Numeric data is assumed to be octal, except for numeric data
used for the following (assumed to be decimal):

» Statement counts in DUP and conditional statements
» Line count in the SPACE pseudo instruction

» Bit position or count in the Bl TWBI TP, or VWD pseudo
instructions

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

» Character counts as in CM CRO, M CRO, OCTM C, and DECM C
pseudo instructions

« Character count in data items (see subsection 4.4.2.3, page 84.

When the asterisk (*) is used with the BASE pseudo instruction,
the numeric base reverts to the base that was in effect prior to
the specification of the current prefix within the current
program segment. Each occurrence of a BASE pseudo instruction
other than BASE * can modify the current prefix. Each BASE *
releases the most current prefix and reactivates the prefix that
preceded the current prefix. If all BASE pseudos instructions
specified are released, a caution-level message is issued, and the
default mode (decimal) is used.

The following example illustrates the use of the BASE pseudo
instruction:

BASE 0 ; Change base fromdefault to octal.

WD 50/ 12 ; Field size and constant val ue both octal.

BASE D ; Change base fromoctal to decinal.

VWD 49/ 19 : Field size and constant val ue both deci nal.

BASE M ; Change from decimal to m xed base.

VWD 39/ 12 ; Field size decinmal, constant val ue octal.

BASE * : Resune deci mal base.

BASE * ; Resune octal base.

BASE * ; Stack enpty — resune deci mal base (default)
SR-3108 9.1 Cray Research, Inc. 193

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

BI TP

The Bl TP pseudo instruction sets the bit position to the value
specified relative to bit O of the current parcel. A value of 16
forces a parcel boundary. If the current bit position is in the
middle of a parcel and a value of 16 is specified, the bit position
is set to the beginning of the next parcel; otherwise, the bit
position is not changed. If the origin and location counters are
set lower than its current value, any code previously generated
in the overlapping portion of the word is ORed with any new
code.

The Bl TP pseudo instruction is restricted to sections that allow
instructions or instructions and data. If the Bl TP pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the Bl TP pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

The format of the Bl TP pseudo instruction is as follows:

i gnor ed BI TP [expression]

The expression variable is optional. If expression is not specified,
the default is the absolute value of 0. If expression is specified, it
must have an address attribute of value, a relative attribute of
absolute, and be a positive value in the range from 0 through 16
(decimal). All symbols within expression (if any) must be defined
previously. If the current base is mixed, decimal is used.

The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The value generated in the code field of the listing is equal to the
value of the expression.

The following example illustrates the use of the Bl TWpseudo
instruction:

vwd
vwd
bitp
vwd

d 16/0
6/0" 12
0

6/0' 12

; Fill first 16 bits with 0.

; Fill next 6 bits with 001100.

; Reset the pointer to bit 0 of parcel B.
; 001100 from previous word is ORed with
; 001010

194

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Pseudo Instruction Descriptions [A]

In the preceding example, O 14 and O 12 are ORed and the

result is 1110:;

Figure 28 through Figure 31 illustrate what happens when CAL
assembles the previous example. # represents the current bit
position, and " indicates an uninitialized bit.

When CAL encounters the VWD d’ 16/ 0 instruction, the
following is stored in parcel A:

0000000000000000 NNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNN
Figure 28. Bl TP example — zoning parcel A
The following is stored in parcel b when VWD 6/ 0’ 14 is
assembled:
0000000000000000 001100/\/\/\/\/\/\/\/\/\/\ NNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNN
A

Figure 29. Bl TP example — parcel b set by VWD instruction

The pointer is reset to bit Oof parcel B when the bitp O
instruction is encountered, as follows:

0000000000000000

NNANNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNN

001100/\/\/\/\/\/\/\/\/\/\
A

Figure 30. Bl TP example — resetting the pointer

The next instruction, VWD 6/ O 12, causes 001010 (0’ 12) to be
ORed with the first 6 bits of parcel B (001100), producing
001110, which is stored, as follows:

0000000000000000

001110/\/\/\/\/\/\/\/\/\/\
A

NANNNNNNNNNNNNNNN

NNNNNNNNANNNNNNNNN

Figure 31. Bl TP example — result of a Bl TP followed by a VWD

SR-3108 9.1

Cray Research, Inc.

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

Bl TW

196

The Bl TWpseudo instruction resets the current bit position to
the value specified, relative to bit 0 of the current word. Ifthe
current bit position is not bit 0, a value of 64 (decimal) forces the
following instruction to be assembled at the beginning of the
next word (force word boundary). If the current bit position is
bit 0, the Bl TWpseudo instruction with a value of 64 does not
force a word boundary, and the instruction following Bl TWis
assembled at bit 0 of the current word.

If the origin and location counters are set lower than the current
value, any code previously generated in the overlapping part of
the word is ORed with any new code.

The Bl TWpseudo instruction is restricted to sections that allow
data or instructions and data. If the Bl TWpseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the Bl TWpseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the Bl TWpseudo instruction is as follows:

i gnor ed Bl TW [expression]

The expression variable is optional. If expression is not specified,
the default is the absolute value of 0. If expression is specified, it
must have an address attribute of value, a relative attribute of
absolute, and be a positive value in the range from 0 to 64
(decimal). All symbols within expression (if any) must have been
defined previously. If the current base is mixed, decimal is used.

The expression operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

The value generated in the code field of the listing is equal to the
value of the expression.

The following example illustrates the use of the Bl TWpseudo
instruction:

Bl TW D 39

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

BLOCK The BLOCK pseudo instruction establishes or resumes use of a
local section of code within a program module. Each section has
its own location, origin, and bit position counters.

This pseudo instruction defines a mixed local section in which
both code and/or data can be stored. The section is assigned to
central or common memory. For more information, see the
description of the SECTI ON pseudo instruction on page 263 of
this appendix.

You must specify the BLOCK pseudo instruction from within a
program module. If the BLOCK pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the BLOCK pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the BLOCK pseudo instruction is as follows:

BLOCK [lnamel/*

The Iname variable is optional and identifies the block. It
indicates which section is used for assembling code until the
occurrence of the next BLOCK or COMMON pseudo instruction.

This long name is restricted in length depending on the type of
loader table that is currently generating the assembler. If the
name is too long, the assembler issues an error message.

The lname operand must meet the requirements for long names
as described subsection 4.3.1, page 70.

The asterisk (*) indicates that the section in control reverts to
the section in effect before the current section was specified
within the current program module. Each occurrence of a BLOCK
pseudo instruction other than BLOCK * causes a section to be
allocated. Each BLOCK * releases the currently active section
and reactivates the section that preceded the current section. If
all specified sections were released when a BLOCK * is
encountered, CAL issues a caution-level message and uses the
main section.

SR-3108 9.1 Cray Research, Inc. 197

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The following example illustrates the use of the BLOCK pseudo
instruction:

BLOCK A

BLOCK
BLOCK *

: Main section is in use.

: Use section A

; Use nmin section

Return to use of section A

BSS

198

The BSS pseudo instruction reserves a block of memory in a
section. A forced word boundary occurs and the number of
words specified by the operand field expression is reserved. This
pseudo instruction does not generate data. To reserve the block
of memory, the location and origin counters are increased.

You must specify the BSS pseudo instruction from within a
program module. If the BSS pseudo instruction is found within a
definition, it is defined and is not recognized as a pseudo
instruction. Ifthe BSS pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the BSS pseudo instruction is as follows:

[symbol] BSS [expression]

The symbol variable is optional. It is assigned the word address
of the location counter after the force word boundary occurs.
symbol must meet the requirement for symbols as described in
subsection 4.3, page 69.

The expression variable is an optional absolute expression with a
word-address or value attribute and with all symbols, if any,

previously defined. The value of the expression must be positive.
A force word boundary occurs before the expression is evaluated.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The left margin of the listing shows the octal word count.

The following example illustrates the use of the BSS pseudo
instruction:

BSS

BSS

16+A-W *

: Reserve nore words so that the total
; starting at Ais 16.

BSSZ

SR-3108 9.1

The BSSZ pseudo instruction generates a block of words that
contain 0’s. When BSSZ is specified, a forced word boundary
occurs, and the number of zeroed words specified by the operand
field expression is generated.

The BSSZ pseudo instruction is restricted to sections that have a
type of data or instructions and data. If the BSSZ pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the BSSZ pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

The format of the BSSZ pseudo instruction is as follows:

[symbol] BSSZ [expression]

The symbol variable represents an optional symbol. It is
assigned the word-address value of the location counter after the
force word boundary occurs. symbol must meet the
requirements for a symbol as described in subsection 4.3, page
69.

The expression variable represents an optional absolute
expression with an attribute of word address or value and with
all symbols previously defined. The expression value must be
positive and specifies the number of 64-bit words containing 0’s
that will be generated. A blank operand field results in no data
generation. The expression operand must meet the requirement
for an expression as described in subsection 4.7, page 94.

Cray Research, Inc. 199

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

CM CRO

The octal word count of a BSSZ is shown in the left margin of the
listing.

The CM CROpseudo instruction assigns a name to a character
string. After the name is defined, it cannot be redefined. If the
CM CROpseudo instruction is defined within the global
definitions part of a program segment, it can be referenced at
any time after its definition by any of the segments that follow.
If the CM CROpseudo instruction is defined within a program
module, it can be referenced at any time after its definition
within the module. However, a constant micro defined within a
program module is discarded at the end of the module and
cannot be referenced by any segments that follow.

If the CM CROpseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the
CM CROpseudo instruction is found within a skipping sequence,
it is skipped and is not recognized as a pseudo instruction.

The format of the CM CROpseudo instruction is as follows:

name

[stringl, lexpll, [exp]l, [casell]l]

200

The name variable is required and is assigned to the character
string in the operand field. It has nonredefinable attributes. If
name was previously defined and the string represented by the
previous definition is not the same string, an error message is
issued and definition occurs. If the strings match, no error
message is issued and no definition occurs. name must meet the
requirements for identifiers as described in subsection 4.2, page
67.

The string variable represents an optional character string that
can include previously defined micros. If string is not specified,
an empty string is used. A character string can be delimited by
any character other than a space. Two consecutive occurrences
of the delimiting character indicate a single such character (for
example, a micro consisting of the single character * can be
specified as ' *' or****) .

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

SR-3108 9.1

The exp variable represents optional expressions. The first
expression must be an absolute expression that indicates the
number of characters in the micro character string. All symbols,
if any, must be previously defined. If the current base is mixed,
decimal is used for the expression. The expressions must meet
the requirements for expressions as described in subsection 4.7,
page 94.

The micro character string is terminated by the value of the first
expression or the final apostrophe of the character string,
whichever occurs first. If the first expression has a 0 or negative
value, the string is considered empty. If the first expression is
not specified, the full value of the character string is used. In
this case, the string is terminated by the final apostrophe.

The second expression must be an absolute expression indicating
the micro string’s starting character. All symbols, if any, must be
defined previously. If the current base is mixed, decimal is used
for the expression.

The starting character of the micro string begins with the
character that is equal to the value of the second expression, or
with the first character in the character string if the second
expression is null or has a value of 1 or less.

The optional case variable denotes the way uppercase and
lowercase characters are interpreted when they are read from
string. Character conversion is restricted to the letter characters
(A-Z and a-z) specified in string. You can specify case in
uppercase, lowercase, or mixed case, and it must be one of the
following:

« M XEDor m xed

string is interpreted as you entered it and no case conversion
occurs. This is the default.

» UPPERor upper

All lowercase alphabetic characters in string are converted to
their uppercase equivalents.

« LOVNERoOr | ower

All uppercase alphabetic characters in string are converted to
their lowercase equivalents.

Cray Research, Inc. 201

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

COVMENT

The COMMENT pseudo instruction defines a character string of up
to 256 characters that will be entered as an informational
comment in the generated binary load module.

If the operand field is empty, the comment field is cleared and no
comment is generated. If a comment is specified more than once,
the most recent one is used. If the last comment differs from the
previous comment, a caution-level message is issued.

If a subprogram contains more than one COMVENT pseudo
instruction, the character string from the last COMVENT pseudo
instruction goes into the binary load module.

You must specify the COMMVENT pseudo instruction from within a
program module. If the COMMVENT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the COMVENT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the COMVENT pseudo instruction is as follows:

ignored COWMENT [del-charlstring-of-ASCIIldel-char]

The del-char variable designates the delimiter character. It
must be a single matching character on both ends of the ASCII
character string. A character string can be delimited by a
character other than an apostrophe. Any ASCII character other
than a space can be used. Two consecutive occurrences of the
delimiting character indicate that a single such character will be
included in the character string.

The string-of ASCII variable is an optional ASCII character
string of any length.

The following example illustrates the use of the COMVENT pseudo
instruction:

| DENT
COMVENT
COMVENT
COMVENT
END

" COPYRI GHT CRAY RESEARCH, | NC. 1992
—CRAY Y——MP conput er system-
@\BCDEF @dEDCBA@

202

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

SR-3108 9.1

The COVMON pseudo instruction establishes a common section or
resumes a previous section. Each section has its own location,
origin, and bit position counters.

This pseudo instruction defines a common section that can be
referenced by another program module. Instructions are not
allowed. The section is assigned to common memory. For more
information, see subsection 5.4, page 120.

Data cannot be defined in a COMMON section without a name (no
name in location field); only storage reservation can be defined
in an unnamed COMVON section. The location field that names a
common section cannot match the location field name of a
previously defined section with a type of COVMON, DYNAM C,
ZEROCOM or TASKCOM If duplicate location field names are
specified, an error-level message is issued.

For a description of unnamed (blank) COVMON, see section 3,
page 33.

You must specify the COMMON pseudo instruction from within a
program module. If the COVMON pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the COVMON pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the COVMON pseudo instruction is as follows:

i gnor ed COVIVON [[namel/*

The Iname variable specifies the optional long name of the
common section to be defined. Iname must meet the
requirements for long names as described in subsection 4.3.1,
page 70.

The long name is restricted in length depending on the type of
loader table the assembler is currently generating. If the name
is too long, the assembler issues an error message.

Unlabeled common sections have specific restrictions. For a
detailed description of blank COVMON sections, see section 3, page
33.

Cray Research, Inc. 203

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The asterisk (*) specifies that the section in control reverts to the
section in effect before the current section was specified within
the current program module. Each occurrence of a COMMON
pseudo instruction other than COMMON * causes a section to be
allocated. Each COMMON * releases the currently active section
and reactivates the section that preceded the current section.

If all specified sections were released when a COVMON * is
encountered, CAL issues a caution-level message and uses the
main section.

The following example illustrates the use of the BLOCK pseudo
instruction:

COVMON

FI RST

: Main section ins use.

: Label ed conmmpn secti on Fl RST.

: Bl ank conmmon.

: Return to | abel ed conmmpbn secti on Fl RST.

: Return to the main section

204

The CON pseudo instruction generates one or more full words of
binary data. This pseudo instruction always causes a forced
word boundary.

The CON pseudo instruction is restricted to sections that have a
type of data or instructions and data. If the CON pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the CON pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The format of the CON pseudo instruction is as follows:

[symbol] CON [expression]{, [expression]}

The symbol variable is an optional symbol. It is assigned the
word address value of the location counter after the force word
boundary occurs. symbol must meet the requirements for a
symbol as described in subsection 4.3, page 69.

The expression variable is an expression whose value will be
inserted into one 64-bit word. If an expression is null, a single
zero word is generated. A force word boundary occurs before any
operand field expressions are evaluated. A double-precision,
floating-point constant is not allowed. expression must meet the
requirements for an expression as described in subsection 4.7,
page 94.

The following example illustrates the use of the CON pseudo
instruction:

A CON O 7777017
CON A : CGenerates the
; address of A

DATA The DATA pseudo instruction generates zero or more bits of code
for each data item parameter found in the operand field. If a
label exists in the location field, a forced word boundary occurs
and the symbol is assigned an address attribute and the value of
the current location counter.

If a label is not included in the location field, a forced word
boundary does not occur.

The DATA pseudo instruction is restricted to sections that have a
type of data, constants, or instructions and data. If the DATA
pseudo instruction is found within a definition, it is defined and
is not recognized as a pseudo instruction. If the DATA pseudo
instruction is found within a skipping sequence, it is skipped
and is not recognized as a pseudo instruction.

SR-3108 9.1 Cray Research, Inc. 205

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The length of the field generated for each data item depends on
the type of constant involved. Data items produce zero or more
bits of absolute value binary code, as follows:

Data item Description

Floating One or two binary words, depending on
whether the data item is a single- or
double-precision data item

Integer One binary word

Character Zero or more bits of binary code depending
on the following:

— Character set specified
— Number of characters in the string
— Character count (optional)

— Character suffix (optional)
A word boundary is not forced between data items.

The format of the DATA pseudo instruction is as follows:

[symbol] DATA [data_iteml]l, [data_item]]

The symbol variable represents an optional symbol that is
assigned the word address of the location counter after a force
word boundary. If no symbol is present, a force word boundary
does not occur. symbol must meet the requirements for a symbol
as described in subsection 4.3, page 69.

The data_item variable represents numeric or character data.
data_item must meet the requirements for a data item as
described in subsection 4.4, page 76.

The DATA pseudo instruction works with the actual number of
bits given in the data item.

206 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

In the following example, unlabeled data items are stored in the
next available bit position (see Figure 32):

| DENT EXDAT

DATA "abcd’ * : Unl abel ed data item 1.
DATA " ef gh’ ; Unl abel ed data item 2.
END

Ij)llOOOOl 01100010 | 01100100 01100100 |01100101 01100110| 01100111 10101000L|

Unlabeled data item number 1 Unlabeled data item number 2

Figure 32. Storage of unlabeled data items

In the following example, labeled data items cause a forced word
boundary (see Figure 33, page 208):

| DENT EXDAT

DATA "abcd’ * : Unl abel ed data item 1.
ALPHA DATA "efgh' * : Labeled data item 1.
BETA DATA Tkl : Label ed data item 2.

DATA 'mop’ ; Unl abel ed data item 2.

SR-3108 9.1 Cray Research, Inc. 207

Pseudo Instruction Descriptions [A]

Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

LOllOOOOl 01100010

01100100 01100100

00000000 00000000

00000000 OOOOOOOOJ

Unlabeled data item number 1

LOllOOlOl 01100110

01100111 01101000

00000000 00000000

00000000 OOOOOOOOJ

Labeled data item number 1

LOllOlOOl 01101010

01101011 01101100A

A01101101 01101110

011001111 0111000(1-|

Labeled data item number 2 Unlabeled data item number 2

Figure 33. Storage of labeled and unlabeled data items

In the following example, if no forced word boundary occurs,
data is stored bit by bit in consecutive words (see Figure 34).
The following data-item is defined with the CDC character set (6
bits per character).

| DENT EXDAT

DATA C ABCDEFGHI JK' * : Unl abel ed data item 1.

0 00000100 00100000 11000100 00010100 01100001 11001000 00100100 10100010 |
Unlabeled data item number 1 First four bits of K
1 AlOOOOOO 00000000 | 00000000 000OO0OO0O0O| 00000000 00O0O0O0O0O0O0O| 00000000 00O0O0O0OOO0OO
Last 2 bits of K Unlabeled data item number 1
Figure 34. Storage of CDC character data item
208 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The following example shows the code generated by each source
statement:

| DENT
DATA

DATA
DATA
DATA
DATA
DATA

DATA
LL2 DATA
DATA
DATA

DATA

END

EXAVPLE

0' 5252, A ABC R : 0000000000000000005252
; 0000000000000020241103

" ABCD : 0405022064204010020040

" EFGH ; 0425062164404010020040

" ABCD * ;040502206420

" EFGH * ;10521443510

" ABCD 12R ; 0000000000000000000000
;040502206420

"EFGHI J' * : 10521443510
;044512

" ABCD : 0405022064204010020040

100 : 0000000000000000000144

1. 25E-9 : 0377435274616704302142

"THIS | S A MESSAGE *L
: 0521102225144022251440
;. 0404402324252324640607
;0424

8/0 ;000

DBSM

SR-3108 9.1

The DBSMpseudo instruction generates a named label entry in
the debug symbol tables with the type specified.

The format of the DBSMpseudo instruction is as follows:

[ignored] DBSM TYPE=synbol

TYPE is specified as either ATP or BOE (after the prologue or
beginning of epilogue). symbol is user defined and marks these
two points in the code. The symbol can appear anywhere in the
code, but the address that is entered into the debug symbol table
is the address of where the pseudo instruction appears in the
code. This pseudo instruction is ignored unless you specify the
debug option on the command line.

Cray Research, Inc. 209

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The following example illustrates the use of the DBSMpseudo
instruction:

| DENT TEST
ENTRY FRED
FRED = *
BSSz 16 ; Fake prol og.
sS4 S4
CHK = *
DBSM ATP=FRED ; Should be the sanme as CHK address.
Al S1
Al S1
Al Sl
DBSM BOE=FRED ; Address should be the sane as the next
:instruction
Sl 5
J BOO
From the debugger, you can do a stop in FRED to generate a
breakpoint at CHK. A call to this routine from a program
executing in the debugger stops the execution.

DECM C The DECM C pseudo instruction converts the positive or negative
value of an expression into a positive or negative decimal
character string that is assigned a redefinable micro name. The
final length of the micro string is inserted into the code field of
the listing.

You can specify DECM Cwith zero, one, or two expressions.
DECM C converts the value of the first expression into a
character string with a character length indicated by the second
expression. If the second expression is not specified, the
minimum number of characters needed to represent the decimal
value of the first expression is used.
If the second expression is specified, the string is equal to the
length specified by the second expression. If the number of
characters in the micro string is less than the value of the second
expression, and the value of the first expression is positive, the
character value is right-justified with the specified fill characters
(zeros or blanks) preceding the value.

210 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

If the number of characters in the string is less than the value of
the second expression, and the value of the first expression is
negative, a minus sign precedes the value. If zero fill is
indicated, zeros are used as fill between the minus sign and the
value. If blank fill is indicated, blanks are used as fill before the
minus sign.

If the number of characters in the string is greater than the
value of the second expression, the characters at the beginning
of the string are truncated and a warning message is issued.

You can specify the DECM C pseudo instruction anywhere within
a program segment. If the DECM Cpseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the DECM C pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the DECM C pseudo instruction is as follows:

name

[expressioni]l, [expressionsl, [option]]]]

SR-3108 9.1

name is assigned to the character string that represents the
decimal value of expression and has redefinable attributes.
name must meet the requirements for identifiers as described in
subsection 4.2, page 67.

expressionl is optional and represents the micro string equal to
the value of the expression. If specified, expression; must have
an address attribute of value and a relative attribute of absolute
with all symbols, if any, previously defined. If the first
expression is not specified, the absolute value of 0 is used. If the
current base is mixed, a default of octal is used. If the first
expression is not specified, the absolute value of 0 is used when
creating the micro string. The expression operand must meet
the requirements for expressions as described in subsection 4.7,
page 94.

expression2 is optional and provides a positive character count
less than or equal to decimal 20. If this parameter is present,
the necessary leading zeros or blanks (depending on option) are
supplied to provide the requested number of characters. If
specified, expressiong must have an address attribute of value

Cray Research, Inc. 211

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

and a relative attribute of absolute with all symbols, if any,
previously defined. If the current base is mixed, a default of
decimal is used. expressiong must meet the requirements for
expressions as described in subsection 4.7, page 94.

If expressiong is not specified, the micro string is represented in
the minimum number of characters needed to represent the
decimal value of the first expression.

option represents the type of fill characters (ZEROfor zeros or
BLANK for spaces) to be used if the second expression is present
and fill is needed. The default is ZERO. You can enter option in
mixed case.

The following example illustrates the use of the DECM Cand
M CSI ZE pseudo instructions:

MC MCRO ‘ABCD
Vv MCSIZE MC

DECT DECM C V, 2

_*There are "DECT” characters in MC.
* There are 19 characters in MCT

; The value of V is the number of
; characters in the mcro string
; represented by MC.

; DECT is a nmicro nane.

212

T Generated by CAL

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The following example demonstrates the ZERO and BLANK
options with positive and negative strings:

BASE D ; The base is decinal

ONE DECM C 1,2

_* " ONE” ; Returns 1 in 2 digits.

* 01 ; Returns 1 in 2 digits.

TWO DECM C 5*8+60+900, 3 ; Deci mal 1000.

_* " TWO ; Returns 1000 as 3 digits (000).

* 000 ; Returns 1000 as 3 digits (000).

THREE DECM C -256000, 10, ZERO ; Decimal string with zero fill.

_* " THREE" ; Mnus sign, zero fill, val ue.

* —-000256000 ; Mnus sign, zero fill, val ue.

FOUR DECM C —256000, | 0, BLANK; Decimal string with blank fill.

_* " FOUR’ ; Blank fill, mnus sign, value.

* ANN_256000 ; Blank fill, mnus sign, val ue.

FIVE DECM C 256000, 10, ZERO

_* " FlI VE” : Zero fill on the left.

* 0000256000 ; Zero fill on the left.

SI X DECM C 256000, 10, BLANK

¥ "SI X ; Blank fill (~) on the left.

* ANAN256000 ; Blank fill (”~) on the left.

END

SEVEN DECM C 256000, 5

_* " SEVEN'’ ; Truncation warning issued.

* 56000 ; Truncation warning issued.

EIGHT DECM C 777777777, 3

_* " El GHT” ; Truncation warning issued.

* 777 ; Truncation warning issued.

DVSG The DVSG pseudo instruction issues a comment level diagnostic
message that contains the string found in the operand field, if a
string exists. If the string consists of more than 80 characters, a
warning message is issued and the string is truncated.
Comment level diagnostic messages might not be issued by
default on the operating system in which CAL is executing. For
more information, see section 2, page 11.
The assembler recognizes up to 80 characters within the string,
but the string may be truncated further when the diagnostic
message is issued (depending on the operating system in which
the assembler is executing).
SR-3108 9.1 Cray Research, Inc. 213

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

ECHO

214

You can specify the DMSG pseudo instruction anywhere within a
program segment. If the DMSGpseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the DMSG pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the DVMSG pseudo instruction is as follows:

ignored DVBG [del-charlstring-of-ASCIIldel-char]

The del-char variable represents the delimiting character. It
must be a single matching character on both ends of the ASCII
character string. Apostrophes and spaces are not legal
delimiters; all other ASCII characters are allowed. Two
consecutive occurrences of the delimiting character indicate a
single such character will be included in the character string.

The string-of ASCII variable represents the ASCII character
string that will be printed to the diagnostic file. A maximum of
80 characters is allowed.

Note: Using the DMSG pseudo instruction for assembly
timings can be deceiving. For example, if the DMSG pseudo
instruction is inserted near the beginning of an assembler
segment, more time could elapse (from the time that CAL
begins assembling the segment to the time the message is
issued) than you might have expected.

The DUP pseudo instruction introduces a sequence of code that is
assembled repetitively a specified number of times The
duplicated code immediately follows the DUP pseudo instruction.

The DUP pseudo instruction is described in detail in subsection
6.4, page 171.

The ECHO pseudo instruction defines a sequence of code that is
assembled zero or more times immediately following the
definition.

The ECHO pseudo instruction is described in detail in subsection
6.5, page 174.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

EDIT The EDI T pseudo instruction toggles the editing function on and
off within a program segment. Appending (* in the new format)
and continuation (, in the old format) are not affected by the
EDI T pseudo instruction. The current editing status is reset at
the beginning of each segment to the editing option specified on
the CAL invocation statement. For a description of statement
editing, see subsection 3.3, page 41.

You can specify the EDI T pseudo instruction anywhere within a
program segment. If the EDI T pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the EDI T pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the EDI T pseudo instruction is as follows:

ignored EDI T * loption

The option variable turns editing on and off. option can be
specified in uppercase, lowercase, or mixed case, and it can be
one of the following:

+ ON(enable editing)
« OFF (disable editing)

» No entry (reverts to the format specified on the CAL
invocation statement)

An asterisk (*) resumes use of the edit option in effect before the
most recent edit option within the current program segment.
Each occurrence of an EDI T other than an EDI T * initiates a
new edit option. Each EDI T * removes the current edit option
and reactivates the edit option that preceded the current edit
option. Ifthe EDI T * statement is encountered and all specified
edit options were released, a caution-level message is issued and
the default is used.

SR-3108 9.1 Cray Research, Inc. 215

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

EJECT The EJECT pseudo instruction causes the beginning of a new
page in the output listing. EJECT is a list control pseudo
instruction and by default, is not listed. To include the EJECT
pseudo instruction on the listing, specify the LI S option on the
LI ST pseudo instruction.

You can specify the EJECT pseudo instruction anywhere within a
program segment. If the EJECT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the EJECT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the EJECT pseudo instruction is as follows:

ignored EJECT ignored

ELSE The ELSE pseudo instruction terminates skipping initiated by
the | FA, | FC, | FE, ELSE, or SKI P pseudo instructions with the
same location field name. If statements are currently being
skipped under control of a statement count, ELSE has no effect.

You can specify the ELSE pseudo instruction anywhere within a
program segment. If the assembler is not currently skipping
statements, EL SE initiates skipping. Skipping is terminated by
an ELSE pseudo instruction with a matching location field name.
If the ELSE pseudo instruction is found within a definition, it is
defined and is not recognized as a pseudo instruction.

The format of the ELSE pseudo instruction is as follows:

name ELSE ignored

The name variable specifies a required name for a conditional
sequence of code. name must meet the requirements for
identifiers as described in subsection 4.2, page 67.

216 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Pseudo Instruction Descriptions [A]

The following example illustrates the use of the ELSE pseudo

instruction:

SYM = 1
L M CRO " LESS THAN
DEF = 1000
BUF = 100

| FA #DEF, A 1
A = 10
BTEST | FA EXT, SYM
WARNI NG ERROR ; CGenerate warning nessage is SYMis

: absol ute.

BTEST ELSE

Al SYM ; Assenble if SYMis not absol ute.
BTEST ENDI F

Assenbl e BSSZ instruction if W is |l ess than BUF, otherw se
*assenbl e ORG

| FE W*, LT, BUF, 2
BSSzZ BUF-W *
; CGenerate words of zero to address BUF.
SKI P 1 ; Skip next statenent.
ORG BUF
| FC YL L EQ, 2
ERROR ERROR ; Error message if mcro string defined
; by L is enpty.
X | FC *ABCD , GT, * ABC
; If ABCD is greater than ABC,
S1 DEF ; Statenent is included.
S2 BUF ; Statenent is included.
X ENDI F
Y | FC o, G, , 2
; If single space is greater than null
; string,
S3 DEF ; Statenent is included.
S4 BUF ; Statenent is included.
Z | FC U VEQ FT R, 2
; If single apostrophe equals single
; apostrophe.
S5 5 ; Statenent is included.
S6 6 ; Statenent is included.
Z ENDI F
SR-3108 9.1 Cray Research, Inc. 217

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

END

218

The END pseudo instruction terminates a program segment

(module initiated with an | DENT pseudo instruction) under the

following conditions:

» If the assembler is not in definition mode

+ Ifthe assembler is not in skipping mode

 If the END pseudo instruction does not occur within an
expansion

The format of the END pseudo instruction is as follows:

ignored END ignored

If the END pseudo instruction is found within a definition, a skip
sequence, or an expansion, a message is issued indicating that
the pseudo instruction is not allowed within these modes and the
statement is treated as follows:

+ Defined if in definition mode
+ Skipped if in skipping mode

¢ Do-nothing instruction if in an expansion

You can specify the END pseudo instruction only from within a
program module. If the END pseudo instruction is valid and
terminates a program module, it causes the assembler to take
the following actions:

» Generates a cross-reference for symbols if the cross-reference
list option is enabled and the listing is enabled

¢ Clears and resets the format option

» Clears and resets the edit option

» Clears and resets the message level

+ Clears and resets all list control options

 Clears and resets the default numeric base

« Discards all qualified, redefinable, nonglobal, and %% symbols
» Discards all qualifiers

» Discards all redefinable and nonglobal micros

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

ENDDUP

ENDI F

ENDM

SR-3108 9.1

» Discards all local macros, opdefs, and local pseudos
instructions (defined with an OPSYN pseudo instruction)

» Discards all sections

The ENDDUP pseudo instruction ends the definition of the code
sequence to be repeated. An ENDDUP pseudo instruction
terminates a dup or echo definition with the same name.

The ENDDUP pseudo instruction is described in detail in
subsection 6.8, page 178.

The ENDI F pseudo instruction terminates skipping initiated by
an | FA, | FE, | FC, ELSE, or SKI P pseudo instruction with the
same location field name; otherwise, ENDI F acts as a do-nothing
pseudo instruction. ENDI F does not affect skipping, which is
controlled by a statement count.

You can specify the ENDI F pseudo instruction anywhere within a
program segment. Skipping is terminated by an ENDI F pseudo
instruction with a matching location field name. If the ENDI F
pseudo instruction is found within a definition, it is defined and
is not recognized as a pseudo instruction.

The format of the ENDI F pseudo instruction is as follows:

name ENDI F ignored

The name variable specifies a required name for a conditional
sequence of code. name must meet the requirements for
identifiers as described in subsection 4.2, page 67.

Note: If an END pseudo instruction is encountered in a
skipping sequence, an error message is issued and skipping is
continued. You should not use the END pseudo instruction
within a skipping sequence.

An ENDMpseudo instruction terminates the body of a macro or
opdef definition.

The ENDMpseudo instruction is described in detail in subsection
6.6, page 177.

Cray Research, Inc. 219

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

ENDTEXT The ENDTEXT pseudo instruction terminates text source initiated
by a TEXT instruction. An | DENT or END pseudo instruction also
terminates text source.

The ENDTEXT is a list control pseudo instruction and by default,
is not listed unless the TXT option is enabled. If the LI S option
is enabled, the ENDTEXT instruction is listed regardless of other
listing options.
You can specify the ENDTEXT pseudo instruction anywhere
within a program segment. If the ENDTEXT pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the ENDTEXT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.
The format of the ENDTEXT pseudo instruction is as follows:
i gnor ed ENDTEXT i gnor ed
The following example illustrates the use of the ENDTEXT pseudo
instruction (with the TXT option off).
The following represents the source listing:
| DENT TEXT
A = 2
TXTNAME TEXT "An exanple.’
B = 3
C = 4
ENDTEXT
Al A
A2 B
END
220 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The following represents the output listing:

| DENT TEXT
A = 2
TXTNAMVE TEXT " An exanpl e.’
Al A
A2 B
END
ENTRY The ENTRY pseudo instruction specifies symbolic addresses or

values that can be referred to by other program modules linked
by the loader. Each entry symbol must be an absolute,
immobile, or relocatable symbol defined within the program
module.

The ENTRY pseudo instruction is restricted to sections that allow
instructions or data or both. If the ENTRY pseudo instruction is
found within a definition or skipping sequence, it is defined and
not recognized as a pseudo instruction.

The format of the ENTRY pseudo instruction is as follows:

i gnor ed ENTRY [symbol], [symbol]

The symbol variable specifies the name of zero, one, or more
symbols. Each of the names must be defined as an unqualified
symbol within the same program module. The corresponding
symbol must not be redefinable, external, or relocatable relative
to either a stack or a task common section.

The length of the symbol is restricted depending on the type of
loader table that the assembler is currently generating. If the
symbol is too long, the assembler will issue an error message.

The symbol operand must meet the requirements for symbols as
described in subsection 4.3, page 69.

SR-3108 9.1 Cray Research, Inc. 221

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The following example illustrates the use of the ENTRY pseudo
instruction:

EPTNME
TREG

ENTRY EPTNME, TREG

O 17

ERRI F

The ERRI F pseudo instruction conditionally issues a listing
message. If the condition is satisfied (t r ue), the appropriate
user-defined message is issued. If the level is not specified, the
ERRI F pseudo instruction issues an error-level message. If the
condition is not satisfied (f al se), no message is issued. If any
errors are encountered while evaluating the operand field, the
resulting condition is handled as if true and the appropriate
user-defined message is issued.

You can specify the ERRI F pseudo instruction anywhere within a
program segment. If the ERRI F pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the ERRI F pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ERRI F pseudo instruction is as follows:

[option]

ERRI F

[expression], condition, [expression]

222

The option variable used in the ERRI F pseudo instruction is the
same as in the ERROR pseudo instruction. See the ERROR pseudo
instruction for information.

Zero, one, or two expressions to be compared by condition. If one
or both of the expressions are missing, a value of absolute 0 is
substituted for every expression that is not specified. Symbols
found in either of the expressions can be defined later in a
segment.

The expression operand must meet the requirements for
expressions as described in subsection 4.7, page 94.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The condition variable specifies the relationship between two
expressions that causes the generation of an error. For LT, LE,
GT, and GE, only the values of the expressions are examined. You
can enter condition in uppercase, lowercase, or mixed case, and
it can be one of the following:

SR-3108 9.1

LT (less than)

The value of the first expression must be less than the value of
the second expression.

LE (less than or equal)

The value of the first expression must be less than or equal to
the value of the second expression.

GT (greater than)

The value of the first expression must be greater than the
value of the second expression.

GE (greater than or equal)

The value of the first expression must be greater than or equal
to the value of the second expression.

EQ(equal)

The value of the first expression must be equal to the value of
the second expression. Both expressions must be one of the
following:

— Absolute
— Immobile relative to the same section

— Relocatable in the program section or the same common
section

— External relative to the same external symbol.

The word-address, parcel-address, or value attributes must be
the same.

Cray Research, Inc. 223

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

ERROR

224

* NE (not equal)

The first expression must not equal the second expression.
Both expressions cannot be absolute, or external relative to
the same external symbol, or relocatable in the program
section or the same common section. The word-address,
parcel-address, or value attributes are not the same.

The ERRI F pseudo instruction does not compare the address and
relative attributes. A CAUTI ONlevel message is issued.

The following example illustrates the use of the ERRI F pseudo
instruction:

P ERRI F ABC, LT, DEF

The ERRCR pseudo instruction unconditionally issues a listing
message. If the level is not specified, the ERROR pseudo
instruction issues an error level message. If the condition is not
satisfied (FALSE), no message is issued.

You can specify the ERROR pseudo instruction anywhere within a
program segment. If the ERROR pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the ERROR pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the ERROR pseudo instruction is as follows:

[option] ERROR ignored

The option variable specifies the error level. It can be entered in
upper, lower, or mixed case. The following error levels are
mapped directly into a user-defined message of the
corresponding level:

COMMVENT, NOTE, CAUTI ON, WARNI NG or ERROR
The following levels are mapped into an error-level message:

CODEFRI,LLNOPRRSTUVorX

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The following levels are mapped into warning-level messages:
WWL, W2, WB, WA, Wb, N6, W7, \8, VD, Y1, or Y2

Messages Cthrough Y2 provide compatibility with Cray
Assembly Language, version 1 (CAL1).

CAL can produce five similar messages with differing levels
(error, warning, caution, note, or comment). The ERRCR pseudo
instruction can be used to check for valid input and to assign an
appropriate message.

In the following example, a user-defined error level message is
specified:

ERROR ERRCR

; ***ERROR*** |nput is not valid

EXI' TM

The EXI TMpseudo instruction immediately terminates the
innermost nested macro or opdef expansion, if any, caused by
either a macro or an opdef call.

The EXI TMpseudo instruction is described in detail in subsection
6.7, page 177.

The EXT pseudo instruction specifies linkage to symbols that are
defined as entry symbols in other program modules. They can be
referred to from within the program module, but must not be
defined as unqualified symbols elsewhere within the program
module. Symbols specified in the EXT instruction are defined as
unqualified symbols that have relative attributes of external and
specified address.

You can specify the EXT pseudo instruction anywhere within a
program module. Ifthe EXT pseudo instruction is found within a
definition or skipping sequence, it is defined and not recognized
as a pseudo instruction.

The format of the EXT pseudo instruction is as follows:

i gnored EXT

[symbol: [attributell, [symbol: [attribute]]

SR-3108 9.1

Cray Research, Inc. 225

Pseudo Instruction Descriptions [A]

Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

226

The variables associated with the EXT pseudo instruction are
described as follows:

» symbol

The symbol variable specifies the name of zero, one, or more
external symbols. Each of the names must be an unqualified
symbol that has a relative attribute of external and the
corresponding address attribute.

The length of the symbol is restricted depending on the type of
loader table that the assembler is currently generating. If the
symbol is too long, the assembler will issue an error message.

The symbol operand must meet the requirements for symbols
as described in subsection 4.3, page 69.

attribute

The attribute variable specifies either the attribute
address-attribute or linkage-attribute as follows:

— The address-attribute type is the address attribute that will
be assigned to the external symbol; it can be one of the
following:

Vorv Value (default)
Porp Parcel
Wor w Word

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

SR-3108 9.1

— The linkage-atiribute type is the linkage attribute that will
be assigned to the external symbol. Linkage attributes can
be specified in uppercase, lowercase, or mixed case, and
they can be one of the following:

HARD (def aul t)
SOFT

If the linkage-attribute is not specified on the EXT pseudo
instruction, the default is HARD. All hard external
references are resolved at load time.

A soft reference for a particular external name is resolved at
load time only when at least one other module has
referenced that same external name as a hard reference.

You conditionally reference a soft external name at
execution time. If a soft external name was not included at
load time and is referenced at execution time, an
appropriate message is issued.

If the operating system for which the assembler is
generating code does not support soft externals, a
caution-level message is issued and soft externals are
treated as hard externals.

Note: Typically, a soft external is used for references to large
software packages (such as graphics packages) that may not
be required in a particular load. When such code is required,
load time is shorter and the absolute module is smaller in
size. For most uses, however, hard externals are
recommended.

Cray Research, Inc. 227

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The following example illustrates the use of the EXT pseudo
instruction:

| DENT

ENTRY
VALUE =

END
| DENT

END

VALUE
2.0

VALUE
VALUE

; The 64-bit external. External value 2.0 is
; stored here by the | oader.

FORMAT

228

CAL supports both the CAL, version 1 (CAL1) statement format
and a new statement format. The FORMAT pseudo instruction
lets you switch between statement formats within a program
segment. The current statement format is reset at the beginning
of each section to the format option specified on the CAL
invocation statement. For a description of the recommended
formatting conventions for the new format, see section 3, page
33.

You can specify the FORMAT pseudo instruction anywhere within
a program segment. If the FORMAT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the FORMAT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the FORMAT pseudo instruction is as follows:

ignored FORVAT * loption

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

| DENT

SR-3108 9.1

The option variable specifies old or new format. option can be
specified in uppercase, lowercase, or mixed case, and it can be
one of the following:

« OLD(o0ld format)
« NEW(new format)

» No entry (reverts to the EDI T option specified on the CAL
invocation statement)

An asterisk (*) resumes use of the format option in effect before
the most recent format option within the current program
segment. Each occurrence of a FORMAT other than a FORMAT *
initiates a new format option. Each FORMAT * removes the
current format option and reactivates the format that preceded
the current format. If the FORMAT * statement is encountered
and all specified format options were released, a caution-level
message is issued and the default is used.

The | DENT pseudo instruction identifies a program module and
marks its beginning. The module name appears in the heading
of the listing produced by CAL (if the title pseudo instruction has
not been used) and in the generated binary load module.

You must specify the | DENT pseudo instruction in the global part
of a CAL program. If the | DENT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the | DENT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the | DENT pseudo instruction is as follows:

ignored | DENT Ilname

The Iname variable is the long name of the program module.
Iname must meet the requirements for long names as described
in subsection 4.2, page 67.

The length of the long name is restricted depending on the type
of loader table the assembler is currently generating. If the
name is too long, the assembler issues an error message.

Cray Research, Inc. 229

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The following example illustrates the use of the | DENT psuedo
instruction:

| DENT

END

EXAMPLE

; Beginning of the EXAMPLE program nodul e
; Ot her code goes here

; End of the EXAMPLE program nodul e

I FA

The | FA pseudo instruction tests an attribute of an expression.
If the expression has the specified attribute, assembly continues
with the next statement. If the result of the attribute test is
false, subsequent statements are skipped. If a location field
name is present, skipping stops when an ENDI F or ELSE pseudo
instruction with the same name is encountered; otherwise,
skipping stops when the statement count is exhausted.

If any errors are encountered while evaluating the
attribute-condition, the resulting condition is handled as if true
and the appropriate listing message is issued.

You can specify the | FA pseudo instruction anywhere within a
program segment. If the | FA pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the | FA pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the | FA pseudo instruction is as follows:

[name]
[name]
[name]

[name]

| FA [#lexp-attribute, expressionl|, [count]]

| FA [#]redef-attribute, symboll, [count]]

| FA [#]reg-attribute, reg-arg_valuel, [count]]
| FA [#]lmicro-attribute, mnamel, [count]]

230

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDI F pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The pound sign (#) is optional and negates the condition. If
errors occur in the attribute condition, the condition is evaluated
as if it were true. Although # does not change the condition, it
does specify the if not condition.

The exp-attribute variable is a mnemonic that signifies an
attribute of expression. expression must meet the requirement
for an expression as described in subsection 4.7, page 94.

An expression has only one address attribute (VAL, PA, or WA)
and relative attribute (ABS, | MM REL, or EXT). An attribute also
can be any of the following mnemonics preceded by a
complement sign (#), indicating that the second subfield does not
satisfy the corresponding condition. You can specify all of the
following mnemonics in mixed case:

Mnemonic Attribute

VAL Value; requires all symbols within the
expression to be defined previously.

PA Parcel address; requires all symbols, if any,
within the expression to be defined previously.

WA Word address; requires all symbols, if any,
within the expression to be defined previously.

ABS Absolute; requires all symbols, if any, within
the expression to be defined previously.

| MM Immobile; requires all symbols, if any, within
the expression to be defined previously.

REL Relocatable; requires all symbols, if any, within
the expression to be defined previously.

EXT External; requires all symbols, if any, within
the expression to be defined previously.

CODE Immobile or relocatable; relative to a code
section. CODE requires all symbols, if any,
within the expression to be defined previously.

DATA Immobile or relocatable; relative to a data
section. DATA requires all symbols, if any,
within the expression to be defined previously.

SR-3108 9.1 Cray Research, Inc. 231

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

Mnemonic

Attribute

ZERODATA

CONST

M XED

TASKCOM

ZEROCOM

DYNAM C

STACK

Immobile or relocatable; relative to a zero data
section. ZERODATA requires all symbols, if any,
within the expression to be defined previously.

Immobile or relocatable; relative to a constant
section. CONST requires all symbols, if any,
within the expression to be defined previously.

Immobile or relocatable; relative to a common
section. M XEDrequires all symbols, if any,
within the expression to be defined previously.

Immobile or relocatable; relative to a common
section. COMrequires all symbols, if any,
within the expression to be defined previously.

Immobile or relocatable; relative to a common
section. COVMON requires all symbols, if any,
within the expression to be defined previously.

Immobile or relocatable; relative to a task
common section. TASKCOMrequires all
symbols, if any, within the expression to be
defined previously.

Immobile or relocatable; relative to a zero
common section. ZEROCOMrequires all
symbols, if any, within the expression to be
defined previously.

Immobile or relocatable; relative to a dynamic
section. DYNAM Crequires all symbols, if any,
within the expression to be defined previously.

Immobile or relocatable; relative to a stack
section. STACK requires all symbols, if any,
within the expression to be defined previously.

Immobile or relocatable; relative to a section
that is placed into common memory. CM
requires all symbols, if any, within the
expression to be defined previously.

232 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

Mnemonic Attribute

EM Immobile or relocatable; relative to a section
that is placed into extended memory. EM
requires all symbols, if any, within the
expression to be defined previously. If EMis
specified, the condition always fails.

LM Immobile or relocatable; relative to a section
that is placed into local memory. LMrequires
all symbols, if any, within the expression to be
defined previously. If LMis specified for a Cray
Research system, the condition always fails.

DEF True if all symbols in the expression were
defined previously; otherwise, the condition is
false.

The redef-attribute variable specifies a redefinable attribute.
The condition is true if the symbol following redef-attribute is
redefinable; otherwise, the condition is false. Redefinable
attribute is defined as follows:

Mnemonic Attribute

SET The symbol in the second subfield is a
redefinable symbol. symbol must meet the
requirements for a symbol as described in
subsection 4.3, page 69.

The reg-attribute variable specifies a register attribute.
reg-arg-value is any ASCII character up to but not including a
legal terminator (blank character or semicolon; new format) and
element separator character (,). If you specify REG, the
condition is true if the following string is a valid
complex-register; otherwise, the condition is false.
Register-attribute is defined as follows:

Mnemonic Attribute

REG The second subfield contains a valid A, B, S, T,
or in register designator.

SR-3108 9.1 Cray Research, Inc. 233

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The micro-attribute variable specifies an attribute of the micro
specified by mname. mname must meet the requirements for
identifiers as described in subsection 4.2, page 67. If you specify
M C, the condition is true if the following identifier is an existing
micro name; otherwise, the condition is false. micro-attribute is
defined as follows:

Mnemonic Attribute

M C The name in the second subfield is a micro
name.

M CRO The name in the second subfield is a micro
name and the corresponding micro can be
redefined.

CM CRO The name in the second subfield is a micro

name and the corresponding micro is constant.

The count variable specifies the statement count. It must be an
absolute expression with positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the
location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

The following example illustrates the use of the | FA pseudo
instruction:

SYML SET 1

SsYme = 2
| FA SET, SYML, 2 . If the condition is true,
S1 SYmL ; include this statenent
S2 SYMR : include this statenent

SYM = 1
| FA SET, Sym, 1 ; If the condition is fal se,
S3 SYMe ; skip this statenent.

234 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

| FC

The | FC pseudo instruction tests a pair of character strings for a
condition under which code will be assembled if the relation
specified by condition is satisfied (true). If the relationship is
not satisfied (false), subsequent statements are skipped. If a
location field name is present, skipping stops when an ENDI F or
EL SE pseudo instruction with the same name is encountered;
otherwise, skipping stops when the statement count is
exhausted.

If any errors are encountered during evaluation of the string
condition, the resulting condition is handled as if true and an
appropriate listing message is issued.

You can specify the | FC pseudo instruction anywhere within a
program segment. If the | FC pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the | FCpseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the | FC pseudo instruction is as follows:

[name]

[string], condition, [string] [, [count]]

SR-3108 9.1

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDI F pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

The string variable specifies the character string that will be
compared. The first and third subfields can be null (empty)
indicating a null character string. The ASCII character code
value of each character in the first string is compared with the
value of each character in the second string. The comparison is
from left to right and continues until an inequality is found or
until the longer string is exhausted. A value of 0 is substituted
for missing characters in the shorter string. Micros and formal
parameters can be contained in the character strings.

Cray Research, Inc. 235

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

236

The string operand is an optional ASCII character string that
must be specified with one matching character on both ends. A
character string can be delimited by any ASCII character other
than a comma or space. Two consecutive occurrences of the
delimiting character indicate a single such character will be
included in the character string.

The following example compares the character strings O 100
and ABCD*:

AlF | FC =0 | 00=, EQ * ABCD* * *

The condition variable specifies the relation that will be satisfied
by the two strings. You can enter condition in mixed case, and it
must be one of the following:

e LT (less than)

The value of the first string must be less than the value of the
second string.

» LE (less than or equal)

The value of the first string must be less than or equal to the
value of the second string.

+ GT (greater than)

The value of the first string must be greater than the value of
the second string.

« CE (greater than or equal)

The value of the first string must be greater than or equal to
the value of the second string.

+ EQ(equal)

The value of the first string must be equal to the value of the
second string.

* NE (not equal)

The value of the first string must not equal the value of the
second string.

The count variable specifies the statement count. It must be an
absolute expression with positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. The count operand is used

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

only when the location field is not specified. If name is not
present and count is present in the operand field, skipping stops
when count is exhausted. If neither name nor count is present,
no skipping occurs.

The following examples illustrates the use of the | FC pseudo
instruction. The first string is delimited by the at sign (@, and
the second string is delimited by the percent sign (%). The first
string is equal to the second string.

| DENT TEST
EX1 IFC @\BC@D@ EQ ¥ABC@%
; The condition is true.
; Ski ppi ng does not occur.
S1 1 ; Statenent is included.
S2 2 : Statenent is included.
EX1 ELSE ; Statenents within the ELSE sequence
; are included only if the condition
: fails.
S3 3 ; Statenent is skipped.
EX1 ENDIF ; End of skip sequence.
END
In the next example, the first string is not equal to the second
string, the two statements following the | FC are skipped.
| DENT TEST
EX1 |IFC @A\BBCD@ EQ, @\BCD@; The condition is false.
; Ski ppi ng occurs.
S1 1 ; Statenent is skipped.
S2 2 ; Statenent is skipped.
EX1 ENDIF ; End of skip sequence
S3 3 ; This statenent is included regardl ess
: of whether the condition is true or
; fal se.
END
SR-3108 9.1 Cray Research, Inc. 237

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

| FE The | FE pseudo instruction tests a pair of expressions for a
condition. If the relation (condition) specified by the operation is
satisfied, code is assembled. If condition is true, assembly
resumes with the next statement; if condition is false,
subsequent statements are skipped. If a location field name is
present, skipping stops when an ENDI F or ELSE pseudo
instruction with the same name is encountered; otherwise,
skipping stops when the statement count is exhausted.

If any errors are encountered during the evaluation of the
expression-condition, the resulting condition is handled as if true
and an appropriate listing message is issued.

If an assembly error is detected, assembly continues with the
next statement.

You can specify the | FE pseudo instruction anywhere within a
program segment. If the | FE pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the | FE pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the | FE pseudo instruction is as follows:

[name] | FE [expression], condition, [expression] [, [count]]

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDI F pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

The expression variables specify the expressions to be compared.
All symbols in the expression must be defined previously. If an
expression is not specified, the absolute value of 0 is used.
expressions must meet the requirements for expressions as
described in subsection 4.7, page 94.

238 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

SR-3108 9.1

The condition variable specifies the relation to be satisfied by the
two strings. You can enter condition in mixed case, and it must
be one of the following:

e« LT (less than)

The value of the first expression must be less than the value of
the second expression. The attributes are not checked.

» LE (less than or equal)

The value of the first expression must be less than or equal to
the value of the second expression. The attributes are not
checked.

» GT (greater than)

The value of the first expression must be greater than the

value of the second expression. The attributes are not
checked.

» CE (greater than or equal)

The value of the first expression must be greater than or equal
to the value of the second expression. The attributes are not
checked.

« EQ(equal)

The value of the first expression must be equal to the value of
the second expression. Both expressions must be one of the
following:

— Attributes must be the same

— Immobile relative to the same section

— Relocatable relative to the same section

— External relative to the same external symbol.

— The word-address, parcel-address, or value
* NE (not equal)

The first expression and the second expression do not satisfy
the conditions required for EQ described above.

The count variable specifies the statement count. It must be an
absolute expression with a positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the

Cray Research, Inc. 239

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

The following example illustrates the use of the | FE pseudo
instruction:

| DENT TEST
Symw = 0
SYM = *
SYMB SET 1000
SYm SET 500
NOTEQ | FE SYML, EQ SYM ; Condition fails, values are the sane,
; but the attributes are different.
S1 SYML ; The ELSE sequence is assenbl ed.
S2 SYM2
NOTEQ ELSE
S1 SYM3 : Statenent is included.
S2 SYma ; Statenent is included.
NOTEQ ENDI F ; End of conditional sequence.
END
| FM The | FMpseudo instruction tests characteristics of the current
target machine. If the result of the machine condition is true,
assembly continues with the next statement. If the result of the
machine condition is false, subsequent statements are skipped.
If a location field name is present, skipping stops when an
ENDI F or ELSE pseudo instruction with the same name is
encountered; otherwise, skipping stops when the statement
count is exhausted.
If any errors are encountered during the evaluation of the string
condition, the resulting condition is handled as if true and an
appropriate listing message is issued.
You can specify the | FMpseudo instruction anywhere within a
program segment. If the | FMpseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the | FMpseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.
240 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The format of the | FMpseudo instruction is as follows:

[namel]
[name]

| FM
| FM

[#]logical-namel, [count]]
numeric-name, condition, [expression] [, [count]]

SR-3108 9.1

The name variable specifies an optional name of a conditional
sequence of code. A conditional sequence of code that is
controlled by a name is ended by an ENDI F pseudo instruction
with a matching name. To reverse the condition of a conditional
sequence of code controlled by a name, use an ELSE pseudo
instruction with a matching name. If both name and count are
present, name takes precedence. name must meet the
requirements for names as described in subsection 4.2, page 67.

The logical-name variable specifies the mnemonic that signifies
a logical condition of the machine for which CAL is currently
targeting code. If the logical name is preceded by a pound sign
(#), its resultant condition is complemented. For a detailed list
of the mnemonics, see the logical traits of the CPU option for the
appropriate operating system in section 2, page 11.

The numeric-name variable specifies the mnemonic that signifies
a numeric condition of the machine for which CAL is currently
targeting code. For a detailed list of the mnemonics, see the
numeric traits of the CPU option for the appropriate operating
system in section 2, page 11. You can specify these mnemonics
in mixed case.

The condition variable specifies the relation to be satisfied
between the numeric name and the expression, if any. You can
enter condition in mixed case, and it must be one of the
following:

e LT (less than)

The value of the numeric name must be less than the value of
the expression.

» LE (less than or equal)

The value of the numeric name must be less than or equal to
the value of the expression.

+ GT (greater than)

The value of the numeric name must be greater than the value
of the expression.

Cray Research, Inc. 241

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

242

» GE (greater than or equal)

The value of the numeric name must be greater than or equal
to the value of the expression.

+ EQ(equal)

The value of the numeric name must be equal to the value of
the expression.

* NE (not equal)

The value of the numeric name must not equal the value of the
expression.

The expression variable specifies the expression to be compared
to the numeric name. All symbols in the expression must be
defined previously and must have an address attribute of value
and a relative attribute of absolute. If the current base is mixed,
a default of decimal is used. If an expression is not specified, the
absolute value of 0 is used. expression must meet the
requirements for expressions as described in subsection 4.7, page
9.

The count variable specifies the statement count. It must be an
absolute expression with a positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the
location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The following example illustrates the use of the | FMpseudo
instruction:

exl

exl

ex?2

ex2

i dent
ifm

i fm

el se

endi f
end

t est
vpop

nunctpus, eq, 4 ; Assuming the condition is fal se,

; Assuming the condition is true,
; ski pping does occur within the | FM
; part.

; ski pping occurs.

; Toggles the condition so that the el se
; part is not skipped.

I NCLUDE

SR-3108 9.1

The | NCLUDE psuedo instruction inserts a file at the current
source position. The | NCLUDE pseudo instruction always
prepares the file for reading by opening it and positioning the
pointer at the beginning.

You can use this pseudo instruction to include the same file more
than once within a particular file.

You can also nest | NCLUDE instructions. Because you cannot use
I NCLUDE recursively, you should review nested | NCLUDE
instructions for recursive calls to a file that you have already
opened.

You can specify the | NCLUDE pseudo instruction anywhere
within a program segment. If the | NCLUDE pseudo instruction
occurs within a definition, it is recognized as a pseudo
instruction and the specified file is included in the definition. If
the | NCLUDE pseudo instruction occurs within a skipping
sequence, it is recognized as a pseudo instruction and the
specified file is included in the skipping sequence. The | NCLUDE
pseudo instruction statement itself is not inserted into a defined
sequence of code.

Cray Research, Inc. 243

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

Note: The | NCLUDE pseudo instruction can be forced into a
definition or skipped sequence of code. When editing is
enabled, | NCLUDE is expanded during execution and the file
is read in at that point. This method is not recommended
because formal parameters are not substituted correctly into
statements when the | NCLUDE macro is expanded during
execution.

If using this method, insert an underscore (_) anywhere
within the pseudo instruction, as follows: | N_CLUDE.

If editing is disabled during execution, | NCLUDE is not
expanded.

The format of the | NCLUDE pseudo instruction is as follows:

ignored | NCLUDE filename

The filename variable is an ASCII character string that
identifies the file to be included. The ASCII character string
must be a valid file name depending on the operating system
under which CAL is executing. If the ASCII character string is
not a valid file name or CAL cannot open the file, a listing
message is issued.

filename must be specified with one matching character on each
end. Any ASCII character other than a comma or space can be
used. Two consecutive occurrences of the delimiting character
indicate a single such character will be included in the character
string.

In the following examples, the module named | NCTEST contains
an | NCLUDE pseudo instruction. The file to be included is named
DOG and the CAT file is included within the DOGfile.

The | NCTEST module is as follows:

| DENT | NCTEST
I NCLUDE * DOG*
END

; Call file DOG with | NCLUDE.

244

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The file DOG contains the following:

S1 1 ; Register Sl gets 1.
| NCLUDE ' CAT ; Call file CAT with | NCLUDE.
S2 2 ; Register S2 gets 2.

The file CAT contains the following:

S3 3 ; Register S3 gets 3.

The expansion of the | NCTEST module is as follows:

| DENT | NCTEST

| NCLUDE * DOG* ; Call file DOG with | NCLUDE.
S1 1 ; Register S1 gets 1.

| NCLUDE ' CAT ; Call file CAT with | NCLUDE.
S3 3 ; Register S3 gets 3.

S2 2 ; Register S2 gets 2.

END

The following example demonstrates that it is illegal to include a
file recursively within nested | NCLUDE instructions.

The | NCTEST module is as follows:

| DENT I NCTEST
| NCLUDE *DOG* ; Call file DOG with | NCLUDE.
END

The file DOG contains the following:

Sl 1 ; Register Sl gets 1.
| NCLUDE ' CAT ; Call file CAT with | NCLUDE.
S2 2 ; Register S2 gets 2.

SR-3108 9.1 Cray Research, Inc. 245

Pseudo Instruction Descriptions [A]

Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The file CAT includes the following:

S3 3
I NCLUDE —-DOG-

; Register S3 gets 3.

; Illegal. If file B was included by
; file A it cannot include file A

The following example demonstrates that it is legal to include a
file more than once if it is not currently being included.

The | NCTEST module is as follows:

| DENT I NCTEST
I NCLUDE *DOG*
I NCLUDE * DOG*

; Call file DOG with | NCLUDE.
; Call file DOG with | NCLUDE.

END
The file DOG contains the following:
S1 1 ; Register S1 gets 1.
S2 2 ; Register S2 gets 2.
The expansion of the | NCTEST module is as follows:
| DENT | NCTEST
| NCLUDE * DOG ; Call file DOG with | NCLUDE.
S1 1 ; Register S1 gets 1.
S2 2 ; Register S2 gets 2.
| NCLUDE * DOG* ; Call file DOG with | NCLUDE.
Sl 1 ; Register Sl gets 1.
S2 2 ; Register S2 gets 2.
END

246

Cray Research, Inc.

SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

LI ST The LI ST pseudo instruction controls the listing. LI ST is a list
control pseudo instruction and by default, is not listed. To
include the LI ST pseudo instruction on the listing, specify the
LI S option on this instruction. An END pseudo instruction resets
options to the default values.

You can specify the LI ST pseudo instruction anywhere within a
program segment. If the LI ST pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the LI ST pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the LI ST pseudo instruction is as follows:

[name] LI ST [option]{, [option]}/*

The name variable specifies the optional list name. name must
meet the requirements for identifiers as described in subsection
4.2, page 67.

If name is present, the instruction is ignored unless a matching
name is specified on the list parameter on the CAL invocation
statement. LI ST pseudos instructions with a matching name
are not ignored. LI ST pseudos instructions with a blank location
field are always processed.

The option variable specifies that a particular listing feature be
enabled or disabled. All option names can be specified in some
form as CAL invocation statement parameters. The selection of
an option on the CAL invocation statement overrides the
enabling or disabling of the corresponding feature by a LI ST
pseudo instruction. If you use the no-list option on the CAL
invocation statement, all LI ST pseudo instructions in the
program are ignored.

There can be zero, one, or more options specified or an *. If no
options are specified, OFF is assumed. The allowed options are
described as follows:

» ON(enables source statement listing)

Source statements and code generated are listed (default).

SR-3108 9.1 Cray Research, Inc. 247

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

« OFF (disables source statement listing)

While this option is selected, only statements with errors are
listed. If the LI Soption is enabled, listing control pseudo
instructions are also listed.

» ED (enables listing of edited statements)

Edited statements are included in the listing file (default).
» NED (disables listing of edited statements)

Edited statements are not included in the listing file.
» XRF (enables cross-reference)

Symbol references are accumulated and a cross-reference
listing is produced (default).

* NXRF (disables cross-reference)

Symbol references are not accumulated. If this option is
selected when the END pseudo instruction is encountered, no
cross-reference is produced.

* XNS (includes nonreferenced local symbols in the reference)

Local symbols that were not referenced in the listing output
are included in the cross-reference listing (default).

* NXNS (excludes nonreferenced local symbols from the
cross-reference)

If this option is selected when the END pseudo instruction is
encountered, local symbols that were not referenced in the
listing output are not included in the cross-reference.

« LI S(enables listing of the listing pseudo instructions)

The LI ST, SPACE, EJECT, Tl TLE, SUBTI TLE, TEXT, and
ENDTEXT psuedo instructions are included in the listing.

* NLI S (disables listing of the listing pseudo instructions)

The LI ST, SPACE, EJECT, Tl TLE, SUBTI TLE, TEXT, and
ENDTEXT psuedo instructions are not included in the listing
(default).

248 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

SR-3108 9.1

TXT (enables global text source listing)

Each statement following a TEXT pseudo instruction is listed
through the ENDTEXT instruction if the listing is otherwise
enabled.

NTXT (disables global text source listing)

Statements that follow a TEXT pseudo instruction through the
following ENDTEXT instruction are not listed (default).

MAC (enables listing of macro and opdef expansions)

Statements generated by macro and opdef calls are listed.
Conditional statements and skipped statements generated by
macro and opdef calls are not listed unless the macro
conditional list feature is enabled (M F).

NVAC (disables listing of macro and opdef expansions)

Statements generated by macro and opdef calls are not listed
(default).

MBO (enables listing of generated statements before editing)

Only statements that produce generated code are listed. The
listing of macro expansions (MAC) or the listing of duplicated
statements (DUP) must also be enabled.

NVBO (disables listing of statements that produce generated
code)

Statements generated by a macro or opdef call (MAC), or by a
DUP or ECHO (DUP) pseudo instruction, are not listed before
editing (default).

Note: Source statements containing a micro reference (see

M Cand NM C options) or a concatenation character are listed
before editing regardless of whether this option is enabled or
disabled.

M C (enables listing of generated statements before editing)

Statements that are generated by a macro or opdef call, or by a
DUP or ECHO pseudo instruction, and that contain a micro
reference or concatenation character are listed before and after
editing. The listing of macro expansions or the listing of
duplicated statements must also be enabled.

Cray Research, Inc. 249

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

+ NM C(disables listing of generated statements before editing)

Statements generated by a macro or opdef call, or by a DUP or
ECHO pseudo instruction, are not listed before editing (default).

Note: Conditional statements (see Nl F and NM F options)
and skipped statements in source code are listed regardless of
whether this option is enabled or disabled.

* M F (enables macro conditional listing)

Conditional statements and skipped statements generated by
a macro or opdef call, or by a DUP or ECHO pseudo instruction,
are listed. The listing of macro expansions or the listing of
duplicated statements must also be enabled.

* NM F (disables macro conditional listing)

Conditional statements and skipped statements generated by
a macro or opdef call, or by a DUP or ECHO pseudo instruction,
are not listed (default).

» DUP (enables listing of duplicated statements)

Statements generated by DUP and ECHO expansions are listed.
Conditional statements and skipped statements generated by
DUP and ECHO are not listed unless the macro conditional list

feature is enabled (M F).

» NDUP (disables listing of duplicated statements)

Statements generated by DUP and ECHO are not listed
(default).

The asterisk (*) reactivates the LI ST pseudo instruction in effect
before the current LI ST pseudo instruction was specified within
the current program segment. Each occurrence of a LI ST pseudo
instruction other than LI ST initiates a new listing control. Each
LI ST releases the current listing control and reactivates the
listing control that preceded the current list control. If all
specified listing controls were released when a LI ST * is
encountered, CAL issues a caution-level message and uses the
defaults for listing control.

250 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

LOC The LOC pseudo instruction sets the location counter to the first
parcel of the word address specified. The location counter is
used for assigning address values to location field symbols.
Changing the location counter allows code to be assembled and
loaded at one location, controlled by the origin counter, then
moved and executed at another address controlled by the
location counter. The LOC pseudo instruction forces a word
boundary within the current section before the location counter
is modified.

The LOC pseudo instruction is restricted to sections that allow
instructions or data, or both. If the LOC pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the LOC pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the LOC pseudo instruction is as follows:

ignored LOC [expression]

The expression variable is optional and represents the new value
of the location counter. If the expression does not exist, the
counter is reset to the absolute value of 0. If the expression does
exist, all symbols (if any) must be defined previously. If the
current base is mixed, octal is used as the base.

The expression operand cannot have an address attribute of
parcel, a relative attribute of external, or a negative value. A
force word boundary occurs before the expression is evaluated.
The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The following example illustrates the use of the LOC pseudo

instruction:
ORG Q *+1000
LOC 200
LBL Al 0
J LBL

SR-3108 9.1 Cray Research, Inc. 251

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

LOCAL

MACRO

M CRO

Note: In the preceding example, the code is generated and
loaded at location W *+10000 and the user must move it to
absolute location 200 before execution.

The LOCAL pseudo instruction specifies unique character string
replacements within a program segment that are defined only
within the macro, opdef, dup, or echo definition. These character
string replacements are known only in the macro, opdef, dup, or
echo at expansion time. The most common usage of the LOCAL
pseudo instruction is for defining symbols, but it is not restricted
to the definition of symbols.

The LOCAL pseudo instruction is described in detail in subsection
6.11, page 184.

The MACRO pseudo instruction marks the beginning of a
sequence of source program instructions saved by the assembler
for inclusion in a program when called for by the macro name.

Macros are described in detail in subsection 6.2, page 134.

The M CROpseudo instruction assigns a name to a character
string. The assigned name can be redefined. You can reference
and redefine a redefinable micro after its initial definition within
a program segment. A micro defined with the M CROpseudo
instruction is discarded at the end of a module and cannot be
referenced by any of the segments that follow.

You can specify the M CRO pseudo instruction anywhere within a
program segment. If the M CROpseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the M CROpseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the M CROpseudo instruction is as follows:

name

[stringl, [exp]l, [exp]l, [casellll]

252

The name variable is required and is assigned to the character
string in the operand field. It has redefinable attributes. If
name was previously defined, the previous micro definition is
lost. name must meet the requirements for identifiers as
described in subsection 4.2, page 67.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The string variable represents an optional character string that
can include previously defined micros. If string is not specified,
an empty string is used. A character string can be delimited by
any character other than a space. Two consecutive occurrences
of the delimiting character indicate a single such character (for
example, a micro consisting of the single character * can be
specified as ' *' or ****),

The exp variable represents optional expressions. The first
expression must be an absolute expression that indicates the
number of characters in the micro character string. All symbols,
if any, must be previously defined. If the current base is mixed,
decimal is used for the expression. The expressions must meet
the requirements for expressions as described in subsection 4.7,
page 94.

The micro character string is terminated by the value of the first
expression or the final apostrophe of the character string,
whichever occurs first. If the first expression has a 0 or negative
value, the string is considered empty. If the first expression is
not specified, the full value of the character string is used. In
this case, the string is terminated by the final apostrophe.

The second expression must be an absolute expression that
indicates the micro string’s starting character. All symbols, if
any, must be defined previously. If the current base is mixed,
decimal is used for the expression.

The starting character of the micro string begins with the
character that is equal to the value of the second expression, or
with the first character in the character string if the second
expression is null or has a value of 1 or less.

The optional case variable denotes the way uppercase and
lowercase characters are interpreted when they are read from
string. Character conversion is restricted to the letter characters
(A—Z and a-z) specified in string. You can specify case in
uppercase, lowercase, or mixed case, and it must be one of the
following:

« M XEDor nm xed

string is interpreted as entered and no case conversion occurs.
This is the default.

SR-3108 9.1 Cray Research, Inc. 253

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

» UPPERor upper

All lowercase alphabetic characters in string are converted to
their uppercase equivalents.

« LOVNERoOr | ower

All uppercase alphabetic characters in string are converted to
their lowercase equivalents.

The following example illustrates the use of the M CRO pseudo
instruction:

M C M CRO "THIS IS A M CRO STRI NG

M C2 M CRO "MCL,

M C2¥ M CRO "THS IS AMCRO STRING, 1

M C3 M CRO "M C2"

M C3tf M CRO T

M C4 M CRO "M C', 10 : CALL TO M CRO M C2.

M C4t M CRO "THIS IS A MCRO STRING , 10

M C5 M CRO "M 4"

M C5%¥ M CRO "THHIS IS A’

M C6 M CRO "M C ‘,5,11

M C6% M CRO "THIS IS A MCRO STRING , 5, 11

M C7 M CRO "M Ce"’

M C7f M CRO "M CRO

M C8 M CRO "M C', 11,5

M C8f M CRO "THHS IS A MCRO STRING , 11,5

M C9 M CRO "M C8"’

M C9¥ M CRO " IS AMCRO

M CSI ZE The M CSI ZE pseudo instruction defines the symbol in the
location field as a symbol with an address attribute of value, a
relative attribute of absolute, and a value equal to the number of
characters in the micro string whose name is in the operand
field. Another SET or M CSI ZE instruction with the same
symbol redefines the symbol to a new value.
¥ CAL has edited these lines
254 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

You can specify the M CSI ZE pseudo instruction anywhere
within a program segment. If the M CSI ZE pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the M CSI ZE pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the M CSI ZE pseudo instruction is as follows:

[symbol] M CSI ZE name

The symbol variable specifies an optional unqualified symbol.
symbol is implicitly qualified by the current qualifier. The
location field can be blank. symbol must meet the requirement
for a symbol as described in subsection 4.3, page 69.

The name variable represents the name of a micro string that
has been previously defined. name must meet the requirements
for identifiers as described in subsection 4.2, page 67.

M_EVEL The MLEVEL pseudo instruction changes the level of messages
received in your source listing. If the M. option on the CAL
invocation statement differs from the option on the MLEVEL
pseudo instruction, the invocation statement overrides the
pseudo instruction.

If the option accompanying the MLEVEL pseudo instruction is not
valid, a diagnostic message is generated and MLEVEL is set to the
default value.

You can specify the MLEVEL pseudo instruction anywhere within
a program segment. If the MLEVEL pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the MLEVEL pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

SR-3108 9.1 Cray Research, Inc. 255

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The format of the MLEVEL pseudo instruction is as follows:

ignored M_EVEL [option]/*

The option variable specifies an optional message level. It can
be entered in uppercase, lowercase, or mixed case, it must be one
of the following levels (the default is WARNI NG):

« ERROR (enables error-level messages only)
« WARNI NG (enables warning- and error-level messages)

» CAUTI ON (enables caution-, warning-, and error-level
messages)

» NOTE (enables note-, caution-, warning-, and error-level
messages)

« COMMENT (enables comment-, note-, caution-, warning-, and
error-level messages)

« No entry (reset to default message level)

The asterisk (*) reactivates the message level in effect before the
current message level was specified within the current program
segment. Each occurrence of an MLEVEL pseudo instruction
other than MLEVEL * initiates a new message level. Each
M_EVEL * releases the current message level and reactivates the
message level that preceded the current message level. If all
specified message levels have been released when an M_.EVEL *
is encountered, CAL issues a caution-level message to alert you
to the situation and then reverts to the default level, warning.

NEXTDUP The NEXTDUP pseudo instruction stops the current iteration of a
duplication sequence indicated by a DUP or an ECHO pseudo
instruction. Assembly of the current repetition of the dup
sequence is terminated immediately and the next repetition, if
any, is begun.

The NEXTDUP pseudo instruction is described in detail in
subsection 6.9, page 179.

256 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

OCTM C

The OCTM C pseudo instruction converts the value of an
expression to a character string that is assigned a redefinable
micro name. The character string that the pseudo instruction
generates is represented as an octal number. The final length of
the micro string is inserted into the code field of the listing.

You can specify OCTM C with zero, one, or two expressions. The
value of the first expression is converted to a micro string with a
character length equal to the second expression. If the second
expression is not specified, the minimum number of characters
needed to represent the octal value of the first expression is
used.

If the second expression is specified, the string is equal to the
length specified by the second expression. If the number of
characters in the micro string is less than the value of the second
expression, the character value is right justified with the
specified fill characters (zeros or blanks) preceding the value. If
the number of characters in the string is greater than the value
of the second expression, the beginning characters of the string
are truncated and a warning message is issued.

You can specify the OCTM C pseudo instruction anywhere within
a program segment. If the OCTM C pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the OCTM C pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the OCTM C pseudo instruction is as follows:

name

[expressiont] [, " [expressionol*, " [option]l]]

SR-3108 9.1

The name variable is required and specifies the name of the
micro. name must meet the requirements for identifiers as
described in subsection 4.2, page 67.

The expression; variable is an optional expression and is equal to
name. If specified, expression; must have an address attribute of
value and a relative attribute of absolute. All symbols used
must be previously defined. If the current base is mixed, a
default of octal is used. If the first expression is not specified,
the absolute value of 0 is used in creating the micro string. The
expressioni operand must meet the requirements for expressions
as described in subsection 4.7, page 94.

Cray Research, Inc. 257

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

expressiong provides a positive character count less than or equal
to decimal 22. If this parameter is present, leading zeros or
blanks (depending on option) are supplied, if necessary, to
provide the requested number of characters. If specified,
expressiong must have an address attribute of value and a
relative attribute of absolute with all symbols, if any, previously
defined. If the current base is mixed, a default of decimal is
used. If expressionsg is not specified, the micro string is
represented in the minimum number of characters needed to
represent the octal value of the first expression. The expressiong
operand must meet the requirements for expressions as
described in subsection 4.7, page 94.

option represents the type of fill characters (ZEROfor zeros or
BLANK for spaces) that will be used if the second expression is
present and fill is needed. The default is ZERO. You can enter
option in mixed case.

The following example illustrates the use of the OCTM C pseudo
instruction:

| DENT EXCCT
BASE 0 ;. The base is octal.
ONE OCTMC 1,2
¥ “ ONE” ; Returns 1 in 2 digits.
* 01 ; Returns 1 in 2 digits.
TW OCTM C 5*7+60+700, 3
_* “TWD ; Returns 1023 in 3 digits.
*
* 023 ; Returns 1023 in 3 digits.
*
THREEOCCTM C 256000, 10, ZERO
¥ “ THREE" : Zero fill on the left.
* 00256000 Zero fill on the left.
FOUR OCTM C 256000, | 0, BLANK
¥ “ FOUR' ; Blank fill (”~) on the left.
* AN256000 ; Blank fill (”~) on the left.
*
END
258 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

OPDEF

OPSYN

SR-3108 9.1

The OPDEF pseudo instruction marks the beginning of an
operation definition (opdef). The opdef identifies a sequence of
statements to be called later in the source program by an opdef
call. Each time the opdef call occurs, the definition sequence is
placed into the source program.

The OPDEF pseudo instruction is described in detail in subsection
6.3, page 154.

The OPSYN pseudo instruction defines an operation that is
synonymous with another macro or pseudo instruction
operation.

The OPSYN pseudo instruction is described in detail in subsection
6.12, page 186.

The ORG pseudo instruction resets the location and origin
counters to the value specified. ORGresets the location and
origin counters to the same value relative to the same section.

The ORG pseudo instruction forces a word boundary within the
current section and also within the new section specified by the
expression. These forced word boundaries occur before the
counter is reset. ORGcan change the current working section
without modifying the section stack.

The ORG pseudo instruction is restricted to sections that allow
instructions or data, or instructions and data. If the ORGpseudo
instruction is found within a definition, it is defined and not
recognized as a pseudo instruction. If the ORGpseudo
instruction is found within a skipping sequence, it is skipped
and not recognized as a pseudo instruction.

The format of the ORG pseudo instruction is as follows:

ignored ORG [expression]

The expression variable is an optional immobile or relocatable
expression with positive relocation within the section currently
in use. Ifthe expression is blank, the word address of the next
available word in the section is used. A force word boundary
occurs before the expression is evaluated.

Cray Research, Inc. 259

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

QUAL

260

The expression must have a value or word-address attribute. If
the expression has a value attribute, it is assumed to be a word
address. If the expression exists, all symbols (if any) must be
defined previously. If the current base is mixed, octal is used as
the base.

The expression cannot have an address attribute of parcel, a
relative attribute of absolute or external, or a negative value.
The expression operand must meet the requirements for an
expression as described in subsection 4.7, page 94.

The following example illustrates the use of the ORG pseudo
instruction:

ORG W *+0’ 200

A QUAL pseudo instruction begins or ends a code sequence in
which all symbols defined are qualified by a qualifier specified
by the QUAL pseudo instruction or are unqualified. Until the
first use of a QUAL pseudo instruction, symbols are defined as
unqualified for each program segment. Global symbols cannot
be qualified. The QUAL pseudo instruction must not occur before
an | DENT pseudo instruction.

A qualifier applies only to symbols. Names used for sections,
conditional sequences, duplicated sequences, macros, micros,
externals, formal parameters, and so on, are not affected.

You must specify the QUAL pseudo instruction from within a
program module. If the QUAL pseudo instruction is found within
a definition or skipping sequence, it is defined and is not
recognized as a pseudo instruction.

At the end of each program segment, all qualified symbols are
discarded.

The format of the QUAL pseudo instruction is as follows:

ignored QUAL *[[name]

The name variable is optional and indicates whether symbols
will be qualified or unqualified and, if qualified, indicates the
qualifier to be used. The name operand must meet the
requirements for names as described subsection 4.3.1, page 70.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

SR-3108 9.1

The name operand causes all symbols defined until the next
QUAL pseudo instruction to be qualified. A qualified symbol can
be referenced with or without the qualifier that is currently
active. If the symbol is referenced while some other qualifier is
active, the reference must be in the following form:

lqualifier/symbol

When a symbol is referenced without a qualifier, CAL tries to
find it in the currently active qualifier. If the qualified symbol is
not defined within the current qualifier, CAL tries to find it in
the list of unqualified symbols. If both of these searches fail, the
symbol is undefined.

An unqualified symbol can be referenced explicitly using the
following form:

/Isymbol

If the operand field of the QUAL is empty, symbols are
unqualified until the next occurrence of a QUAL pseudo
instruction. An unqualified symbol can be referenced without
qualification from any place in the program module, or in the
case of global symbols, from any program segment assembled
after the symbol definition.

An asterisk (*) resumes use of the qualifier in effect before the
most recent qualification within the current program segment.
Each occurrence of a QUAL other than a QUAL * causes the
initiation of a new qualifier. Each QUAL * removes the current
qualifier and activates the most recent prior qualification. If the
QUAL * statement is encountered and all specified qualifiers are
released, a caution-level message is issued and succeeding
symbols are defined as being unqualified.

Cray Research, Inc. 261

Pseudo Instruction Descriptions [A]

Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The following example illustrates the use of the QUAL pseudo

instruction:
* Assenbl er default for synbols is unqualified.
ABC = 1 ; ABC i s unqualifi ed.
QUAL QNAMEL ; Synbol qualifier QNAVEL
ABC = 2 ; ABC is qualified by QNAMEL.
J XYZ
XYZ S1 A2 7 XYZ is qualified by OQNAVEL.
QUAL ONAME2 ; Synbol qualifier QNAVE2.
ABC = 3
J | QNAMEL/ XYZ
QUAL * ; Resune the use of synbols qualified with
; qualifier QNAMEL.
QUAL * ; Resune the use of unqualified synbols
A | FA DEF, ABC : TEst whether ABC is defined.
B | FA DEF,/ QNAMELl/ ABC; Test if ABCis defined within qualifier
;. QNAVEL
C | FA DEF,/ QNAME2/ ABC; Test if /QNAVE2/ ABC is defined within
; qualifier QNAME2.
262 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

SECTI ON

SR-3108 9.1

The SECTI ON pseudo instruction establishes or resumes a
section of code. The section can be common or local, depending
on the options found in the operand field. Each section has its
own location, origin, and bit-position counters.

You must specify the SECTI ON pseudo instruction from within a
program module. If the SECTI ON pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the SECTI ON pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the SECTI ON pseudo instruction is as follows:

[lname] SECTI ON [typell", " llocation]ll*, " [ENTRY]]
[lname] SECTI ON [location]*, " [typelll*, " [ENTRY]]
[lname] SECTI ON [typell*, ” [ENTRYII", " [location]]
[lname] SECTI ON [location][*, " [ENTRYTI[", " [typell
[lname] SECTI ON [ENTRYI[“, " [location]ll", " [typell
[lname] SECTI ON [ENTRYI[®, " [typelll* , " [location]]
ignored SECTION *

The variables associated with the SECTI ON pseudo instruction
are described as follows:

» lname

The lname variable is optional and names the section. lname
must meet the requirements for long names as described in
subsection 4.3.1, page 70.

The length of the long name is restricted depending on the
type of loader table that the assembler is currently generating.
If the name is too long, the assembler issues an error message.

Cray Research, Inc. 263

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

* type

The type variable specifies the type of section. It can be
specified in uppercase, lowercase, or mixed case. type can be
one of the following (for a description of local sections, see
subsection 3.6.1, page 54):

— M XED

Defines a section that permits both instructions and data.

M XEDis the default type for the main section initiated by
the | DENT pseudo instruction. If¢ype is not specified,

M XEDis the default. The loader treats a M XED section as a
local section.

— CODE

Restricts a section to instructions only; data is not
permitted. The loader treats a CODE section as a local
section.

— DATA

Restricts a section to data only (CON, DATA, BSSZ, and so
on); instructions are not permitted. The loader treats the
DATA section as a local section.

— ZERCDATA

Neither instructions nor data are allowed within this
section. The loader treats a ZERODATA section as a local
section. At load time, all space within a ZERODATA section
is set to 0.

— CONST

Restricts a section to constants only (CON, DATA, BSSZ, and
so on); instructions are not permitted. The loader treats the
CONST section as a local section.

264 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

— STACK

Sets up a stack frame (designated memory area). Neither
data nor instructions are allowed. All symbols that are
defined using the location or origin counter and are relative
to a section that has a type of STACK are assigned a relative
attribute of immobile.

These symbols may be used as offsets into the STACK section
itself. These sections are treated like other section types
except relocation does not occur after assembly. Because
relocation does not occur, sections with a type of stack are
not passed to the loader.

Sections with a type of STACK conveniently indicate that
symbols are relative to an execution-time stack frame and
that their values correspond to an absolute location within
the stack frame relative to the base of the stack frame.
Symbols with stack attributes are indicated as such in the
debug tables that CAL produces.

Note: Accessing data from a stack section is not as
straightforward as accessing data directly from memory. For
more information about stacks, see the UNICOS Macros and
Opdefs Reference Manual, publication SR—2403.

— COMVON

Defines a common section that can be referenced by another
program module. Instructions are not allowed.

Data cannot be defined in a COVMON section without a name
(no name in location field); only storage reservation can be
defined in an unnamed COVMON section. The location field
that names a COMMON section cannot match the location field
name of a previously defined section with a type of COMVON,
DYNAM C, ZEROCOM or TASKCOM If duplicate location field
names are specified, an error level message is issued.

For a description of unnamed (blank) COMMON, see
subsection 3.6.2, page 55.

SR-3108 9.1 Cray Research, Inc. 265

Pseudo Instruction Descriptions [A]

Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

266

— DYNAM C

Allocates an expandable common section at load time.
DYNAM Cis a common section. Neither instructions nor
data are permitted within a DYNAM C section; only storage
reservation can be defined in an unnamed DYNAM C section.
The location field that names a DYNAM C section cannot
match the location field name of a previously defined section
with a type of COVMON, DYNAM C, ZEROCOM or TASKCOM If
duplicate location field names are specified, an error-level
message is issued.

For a description of blank DYNAM C, see subsection 3.6.2,
page 55.

ZERCCOM

Defines a common section that can be referenced by another
program module. Neither instructions nor data are
permitted within a ZEROCOMsection; only storage
reservation can be defined.

At load time, all uninitialized space within a ZEROCOM
section is set to 0. If a COMMON section with the same name
contains the initialized text that was referenced by another
module that will be loaded, portions of a ZEROCOMsection
can be explicitly initialized to values other than 0.

ZEROCOMmust always be named. The location field that
names a ZEROCOMsection cannot match the location field
name of a previously defined section with a type of COVIMON,
DYNAM C, ZEROCOM or TASKCOM If duplicate location field
names are specified, an error level message is issued.

TASKCOM

Defines a task common section. Neither instructions nor
data are allowed at assembly time. At execution time,
TASKCOMis set up and can be referenced by all subroutines
that are local to a task. Data also can be inserted at
execution time into a TASKCOMsection by any subroutine
that is executed within a single task.

When a section is defined with a type of TASKCOM CAL
creates a symbol that is assigned the name in the location
field of the SECTI ON pseudo instruction that defines the
section. This symbol is not redefinable, has a value of 0, an
address attribute of word, and a relative attribute that is

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

relocatable relative to the section. The loader relocates this
symbol, and it is used as an offset into an execution time
task common table. The word at which it points within this
table contains the address of the base of the task common
section in memory.

All symbols defined using the location or origin counter
within a task common section are assigned a relative
attribute of immobile. These symbols are treated like other
symbols, but relocation does not occur after assembly.
These symbols can be used as offsets into the task common
section itself.

Sections with a type of TASKCOMindicate that their symbols
are relative to an execution-time task common section, and
their values correspond to an absolute location within the
task common section relative to the beginning of the task
common section. These values are indicated as such in the
debug tables that CAL produces. For a description of local
sections, see subsection 3.6.1, page 54.

TASKCOMmust always be named. The location field that
names a TASKCOMsection cannot match the location field
name of a previously defined section with a type of COMVON,
DYNAM C, ZEROCOM or TASKCOM If duplicate location field
names are specified, an error level message is issued.

Note: Accessing data from a task common section is not as
straightforward as accessing data directly from memory. For
more information about task common, see the CF90 Fortran
Language Reference Manual, publication SR—3902.

» location

The kind of memory to which the section is assigned can be
uppercase, lowercase, or mixed case, and it must be:

CMm Central or common memory (default).
« ENTRY

Sets a bit in the Program Descriptor table to direct segl dr to
create an entry point at the same address as the first word of
the section.

SR-3108 9.1 Cray Research, Inc. 267

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

e *

The name, type, and location of the section in control reverts to
the name, type, and location of the section in effect before the
current section was specified within the current program
module. Each occurrence of a SECTI ON pseudo instruction
other than SECTI ON * causes a section with the name, type,
and location specified to be allocated. Each SECTI ON *
releases the currently active section and reactivates the
section that preceded the current section. If all specified
sections were released when a SECTI ON * is encountered,
CAL issues a caution-level message and uses the main section.

When type and/or location are not specified, M XED and
common memory are used by default.

If type and/or location are not specified, the defaults are M XED
for type and CMfor location. Because a module within a program
segment is initialized without a name, these defaults, when
acting together, force this initial section entry to become the
current working section.

If the section name and attributes are previously defined, the
SECTI ON pseudo instruction makes the previously defined
section entry the current working section. If the section name
and attributes are not defined, the SECTI ON pseudo instruction
tries to create a new section with the name and attributes. The
following restrictions apply when a new section is created:

» A section of the type TASKCOM COMMON, ZEROCOM and a
section with a specified entry must always have a location
field name.

 If a section with a type of COVMMON, DYNAM C, ZEROCOM or
TASKCOMis being created for the first time, it must never have

a name that matches a section that was created previously
with a type of COVMON, DYNAM C, ZEROCOM or TASKCOM

268 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual

Pseudo Instruction Descriptions

[A]

The following example illustrates the use of the SECTI ON pseudo
instruction:

i dent exsect
con 1
S1 1

sectiondat a

The Main section has by default a type of
m xed and a | ocation of commobn nenory.

Data and instructions are permtted in
the Main section

dsect This section is defined with a nanme of
dsect, a type of data, and | ocation of
conmon menory.

con 3 Data is permitted in dsect.

bszz 2 Data is permitted in dsect.

S2 S3 CAL generates an error-|level nessage
because instructions are illegal in a
section with a type of data.

csect sectioncomon This section is defined with a name of
csect, a type of conmmon, and by default a
| ocati on of comon nenory.

dat a 112345678’ Data is permitted in a naned conmon
section.

S2 Al CAL generates an error-level nessage,
because instructions are not permtted in
a conmon section

section This section is unnaned and is assigned
by default a type of mixed and a | ocation
of common nenory. \Wen a section is
specified without a nanme, a type, and a
| ocation, the main section becones the
current section.

secti on* The current section reverts to the
previous section in the stack buffer
csect .

(continued)
SR-3108 9.1 Cray Research, Inc. 269

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

section* ; The current section reverts to the
; previous section in the stack buffer
: dsect.
con 2 ; A nenory location with a value of 2 is

 inserted into dsect.

secti on* : The current section reverts to the main
; section.
dsect sectioncode ; CAL considers this section specification

; unique and different fromthe previously
: defined section naned dsect. Sections

; wth types of m xed, code, data, and

; stack are treated as | ocal sections that

; are specified with the same nane

; therefore, are, considered unique if they
; are specified with different types.

sl s2 ; Instructions are permitted in dsect.
csect sectionconmmon, cm : The current section reverts to the
; section defined previously as csect.
; When a section is specified with the
; name, type, and location of a previously
; defined section, the previously defined
; section becones the current section.

secti on* ; The current section reverts to the main
; section
con 2 ; CAL generates an error—| evel message

; because data is not permitted in a
; section with a type of code.

secti on* ; This current section reverts to the main
;. section.

(continued)

270 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

csect

secti ondynam c

end

; CAL generates an error—| evel nessage,

; because the | oader does not treat

; sections with types of common, dynamic

; and taskcom as | ocal sections Specifying
; a section with a previously defined nane
; is illegal when the acconpanying type

; does not define a local section

SET

SR-3108 9.1

The SET pseudo instruction resembles the = pseudo instruction;
however, a symbol defined by SET is redefinable.

You can specify the SET pseudo instruction anywhere within a
program segment. If the SET pseudo instruction is found within
a definition, it is defined and is not recognized as a pseudo
instruction. If the SET pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a
pseudo instruction.

The format of the SET pseudo instruction is as follows:

[symbol] SET expression|, [attribute]]

The symbol variable specifies an optional unqualified symbol.
The symbol is implicitly qualified by the current qualifier. A
symbol defined with the SET pseudo instruction can be redefined
with another SET pseudo instruction, but the symbol must not be
defined prior to the first SET pseudo instruction. The location
field can be blank. symbol must meet the requirements for
symbols as described in subsection 4.3, page 69.

All symbols found within expression must have been previously
defined. The expression operand must meet the requirements for
an expression as described in subsection 4.7, page 94.

The attribute variable specifies a parcel (P), word (W, or value (V)
attribute. Attribute, if present, is used rather than the
expression’s attribute. If a parcel-address attribute is specified,
an expression with word-address attribute is multiplied by four;
if word-address attribute is specified, an expression with
parcel-address attribute is divided by four. An immobile or
relocatable expression cannot be specified as having a value
attribute.

Cray Research, Inc. 271

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

The following example illustrates the use of the SET pseudo
instruction:

SI ZE
PARAM

PARCEL
SI ZE
PARAM

SET
SET
SET

SET

0' 100
D 18
*W

*p

Sl ZE+1
PARAM#2

;111 egal
; Legal

SKI P

272

The SKI P pseudo instruction unconditionally skips subsequent
statements. If a location field name is present, skipping stops
when an ENDI F or ELSE with the same name is encountered;
otherwise, skipping stops when the statement count is
exhausted.

You can specify the SKI P pseudo instruction anywhere within a
program segment. If the SKI P pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the SKI P pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the SKI P pseudo instruction is as follows:

[name] SKI P [count]

The name variable specifies an optional name for a conditional
sequence of code. If both name and count are present, name
takes precedence. name must meet the requirements for
identifiers as described in subsection 4.2, page 67.

The count variable specifies a statement count. It must be an
absolute expression with a positive value. All symbols in the
expression, if any, must be previously defined. A missing or null
count subfield gives a zero count. count is used only when the
location field is not specified. If name is not present and count is
present in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no skipping
occurs.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The following example illustrates the use of the SKI P pseudo
instruction:

SNAMEL

SNAMEL

SNAME2

SNAME2

SKI P
SKI' P

ENDI F

éKI P 10

ENDI F

SKIP 4

; No ski ppi ng occurs.

; Statenents are skipped if an ENDI F or
; ELSE with a matching location field

: label is found.

; Statenents are skipped until an ENDIF
; or ELSE with a matching | ocation field
: label is found.

; Four statenents are skipped.

SPACE

SR-3108 9.1

The SPACE pseudo instruction inserts the number of blank lines
specified into the output listing. SPACE is a list control pseudo
instruction and by default, is not listed. To include the SPACE
pseudo instruction on the listing, specify the LI S option on the
LI ST pseudo instruction.

You can specify the SPACE pseudo instruction anywhere within a
program segment. If the SPACE pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the SPACE pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the SPACE pseudo instruction is as follows:

ignored SPACE [expression]

The expression variable specifies an optional absolute expression
that specifies the number of blank lines to insert in the listing.
expression must have an address attribute of value, a relative
attribute of absolute, and a value of 0 or greater.

Cray Research, Inc. 273

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

STACK

274

If expression is not specified, the absolute value of 1 is used and
one blank line is inserted into the output listing. If the current
base is mixed, a default of decimal is used for the expression.

The expression operand must meet the requirement for an
expression as described in subsection 4.7, page 94.

The STACK pseudo instruction increases the size of the stack.
Increments made by the STACK pseudo instruction are
cumulative. Each time the STACK pseudo instruction is used
within a module, the current stack size is incremented by the
number of words specified by the expression in the operand field
of the STACK pseudo instruction.

The STACK pseudo instruction is used in conjunction with
sections that have a type of STACK. If either a STACK section or
the STACK pseudo instruction is specified within a module, the
loader tables that the assembler produces indicate that the
module uses one or more stacks. The stack size indicated in the
loader tables is the combined sizes of all STACK sections, if any,
added to the total value of all STACK pseudo instructions, if any,
specified within a module.

You must specify the STACK pseudo instruction from within a
program module. Ifthe STACK pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the STACK pseudo instruction is found
within a skipping sequence, it is skipped and not recognized as a
pseudo instruction.

The format of the STACK pseudo instruction is as follows:

ignored STACK [expression]

The expression variable is optional. If specified, it must have an
address attribute of word or value, a relative attribute of
absolute, a positive value, and all symbols within it (if any) must
be defined previously.

If STACK is specified without expression, the stack is not
incremented. The expression operand must meet the
requirements for an expression as described in subsection 4.7,
page 94.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

START

SR-3108 9.1

The START pseudo instruction specifies the main program entry.
The program uses the START pseudo instruction to specify the
symbolic address at which execution begins following the loading
of the program. The named symbol can optionally be an entry
symbol specified in an ENTRY pseudo instruction.

You must specify the START pseudo instruction from within a
program module. Ifthe START pseudo instruction is found
within a definition or skipping sequence, it is defined and is not
recognized as a pseudo instruction.

The format of the START pseudo instruction is as follows:

ignored START symbol

The symbol variable must be the name of a symbol that is
defined as an unqualified symbol within the same program
module. symbol must not be redefinable, must have a relative
attribute of relocatable, and cannot be relocatable relative to any
section other than a section that allows instructions or a section
that allows instructions and data. The START pseudo instruction
cannot be specified in a section with a type of data only.

The length of the symbol is restricted depending on the type of
loader table that the assembler is currently generating. If the
symbol is too long, an error message results.

The symbol operand must meet the requirements for symbols as
described subsection 4.3, page 69.

The following example illustrates the use of the START pseudo
instruction:

| DENT EXAMPLE

START HERE
HERE = *

END

Cray Research, Inc. 275

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

STOPDUP

SUBTI TLE

The STOPDUP pseudo instruction stops duplication of a code
sequence indicated by a DUP or ECHO pseudo instruction.

The STOPDUP pseudo instruction is described in detail in
subsection 6.10, page 180.

The SUBTI TLE pseudo instruction specifies the subtitle that will
be printed on the listing. The instruction also causes a page
eject. SUBTI TLE is a list control pseudo instruction and is, by
default, not listed. To include the SUBTI TLE pseudo instruction
on the listing, specify the LI S option on the LI ST pseudo
instruction.

You can specify the SUBTI TLE pseudo instruction anywhere
within a program segment. If the SUBTI TLE pseudo instruction
is found within a definition, it is defined and is not recognized as
a pseudo instruction. If the SUBTI TLE pseudo instruction is
found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

The format of the SUBTI TLE pseudo instruction is as follows:

ignored SUBTI TLE

[del-charlstring-of-ASCIIldel-char]

TEXT

276

The del-char variable is the delimiting character. It must be a
single matching character on both ends of the ASCII character
string. Apostrophes and spaces are not legal delimiters; all
other ASCII characters are allowed. Two consecutive
occurrences of the delimiting character indicate a single such
character will be included in the character string.

The string-of-ASCII variable is an ASCII character string that
will be printed as the subtitle on subsequent pages of the listing.
This string replaces any previous string found within the
subtitle field.

Source lines that follow the TEXT pseudo instruction through the
next ENDTEXT pseudo instruction are treated as text source
statements. These statements are listed only when the TXT
listing option is enabled. A symbol defined in text source is
treated as a text symbol for cross-reference purposes; that is,
such a symbol is not listed in the cross-reference unless a
reference to the symbol from a listed statement exists. The text
name part of the cross-reference listing contains the text name.

Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

If the text appears in the global part of a program segment,
Symbols defined in text source are global. If the text appears
within a program module, symbols in text source are local.

TEXT is a list control pseudo instruction and is, by default, not
listed. The TEXT pseudo instruction is listed if the listing is on
or if the LI Slisting option is enabled regardless of other listing
options.

The TEXT and ENDTEXT pseudo instructions have no effect on a
binary definition file.

You can specify the TEXT pseudo instruction anywhere within a
program segment. If the TEXT pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the TEXT pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the TEXT pseudo instruction is as follows:

[name]

[del-charlstring-of-ASCII]del-char]

SR-3108 9.1

The name variable is optional. It is used as the name of the
following source until the next ENDTEXT pseudo instruction. The
name found in the location field is the text name for all defined
symbols in the section, and it is listed in the text name part of
the cross-reference listing.

The name location must meet the requirements for names as
described in subsection 4.2, page 67.

The del-char variable is the delimiting character. It must be a
single matching character on both ends of the ASCII character
string. Apostrophes and spaces are not legal delimiters; all
other ASCII characters are allowed. Two consecutive
occurrences of the delimiting character indicate a single such
character will be included in the character string.

The string-of-ASCII variable is an ASCII character string that
will be printed as the subtitle on subsequent pages of the listing.
A maximum of 72 characters is allowed. This string replaces
any previous string found within the subtitle field.

Cray Research, Inc. 277

Pseudo Instruction Descriptions [A] Cray Assembly Language (CAL) for CRAY PVP Systems Reference Manual

TI TLE The Tl TLE pseudo instruction specifies the main title that will
be printed on the listing. Tl TLE is a list control pseudo
instruction and is, by default, not listed. To include the Tl TLE
pseudo instruction on the listing, specify the LI S option on the
LI ST pseudo instruction.

You can specify the Tl TLE pseudo instruction anywhere within a
program segment. If the Tl TLE pseudo instruction is found
within a definition, it is defined and is not recognized as a
pseudo instruction. If the Tl TLE pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

The format of the Tl TLE pseudo instruction is as follows:

ignored TI TLE [del-charlstring-of-ASCII]del-char]

The del-char variable is the delimiting character. It must be a
single matching character on both ends of the ASCII character
string. Apostrophes and spaces are not legal delimiters; all
other ASCII characters are allowed. Two consecutive
occurrences of the delimiting character indicate a single such
character will be included in the character string.

The string-of ASCII variable is an ASCII character string that
will be printed to the diagnostic file. A maximum of 72
characters is allowed.

VWD The VD pseudo instruction allows data to be generated in fields
that are from 0 to 64 bits wide. Fields can cross word
boundaries. Data begins at the current bit position unless a
symbol is used in the location field. If a symbol is present within
the location field, a forced word boundary occurs, and the data
begins at the new current bit position.

Code for each subfield is packed tightly with no unused bits
inserted.

The WD pseudo instruction is restricted to sections that have a
type of instructions, data, or both. If the VWD pseudo instruction
is found within a definition, it is defined and is not recognized as
a pseudo instruction. If the VWD pseudo instruction is found
within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

278 Cray Research, Inc. SR-3108 9.1

Cray Assembly Language (CAL) for Cray PVP Systems Reference Manual Pseudo Instruction Descriptions [A]

The format of the VWD pseudo instruction is as follows:

[symbol]

VWD [count! [expression]ll, [count!/ [expression]]]

The symbol variable represents an optional symbol. If symbol is
present, a force word boundary occurs. The symbol is defined
with the value of the location counter after the force word
boundary and has an address attribute of word. symbol must
meet the requirements for symbols as described in subsection
4.3, page 69.

The count variable specifies the number of bits in the field. It
can be a numeric constant or symbol with absolute and value
attributes. count must be positive and less than or equal to 64.
If a symbol is specified for count, it must have been previously
defined. If one or more count entries are not valid, no code is
generated for the entire set of subfields in the operand field;
however, each subfield is still evaluated.

The expression variable represents the expression whose value
will be inserted in the field. If expression is missing, the
absolute value of 0 is used. If count is not equal to 0, the count is
the number of bits reserved to store the following expression, if
any. expression must meet the requirement for expressions as
described in subsection 4.7, page 94.

The following example illustrates the use of the VWD pseudo
instruction:

BASE
PDT BSS
VWD

RENDR=

M
0

1/ SI G\, 3/ 0, 60A “NAM* R

64—* W
REMDR/ DSN

;' 1000000000000023440515
;10000000653

41

;00011044516

SR-3108 9.1

In the preceding example, the value of SI GNis 1, the value of FC
is 0, the value of ADDis 653 (octal), and the value of DSNis $I N
in ASCII code.

Cray Research, Inc. 279

