
Frame Streamer Express
A Streaming USB Laser Show DAC Controller

Document last modified May 29, 2010 (by Christopher Favreau – cfavreau@fab-favreau.com)

This document describes the Frame Streamer Express V1.X, a USB based streaming laser

show DAC interface. It consists of several sections: Purpose, Features, “Streaming” Details,

and PC Interface Details.

Purpose:

The purpose of the FSX1 is to provide a simple interface for the existing parallel port DAC

interfaces in existence. Most modern computers include USB ports. These ports provide

power and a fast data interface. This interface is designed to be simple and reflect the

simplicity of the parallel port DACs themselves.

Features:

1 USB Interface (for data and power)

2 X and Y 8 Bit DAC Interface

2 Controls Parallel Port DAC (How many variations are there?)

3 Programmable Output Rate (adjustable up to 30 kpps)

4 Outputs:

 o X

 o Y

 o Blanking, 1 Bit Red, 1 Bit Green, 1 Bit Blue (blanking bit is currently inferred

by RGB)

 o Support extra 4 bits of misc. output (not currently supported in protocol)

5 Onboard DC to DC converter that provides +/- 12VDC @ 90mA

“Streaming” Details

The streaming nature of this interface enables it to be made with less parts and yet still

allow microcontroller maintained output rate. The microcontroller maintains a very small

buffer of points and does not store a whole frames worth of data. The host computer sends

a frame to the controller over the USB to serial port interface. The frame is then buffered in

the USB to serial chip and in the microcontroller. The microcontroller then sends out each

point in the frame at the programmed output rate. Another way of thinking about it is data

is poured into the USB port via a virtual serial port interface and is regulated on the output

by the microcontroller. So the whole system acts as a funnel and flow regulator for the

laser show frame points.

The data packet being sent to the microcontroller consists of 3 bytes. The first byte is the

control byte. It contains the packet identifier. Based on the packet identifier the following 2

bytes mean different things. The following is table of the possible packet identifiers and

following bytes:

Indent. Byte Data Byte 1 Data Byte 2 Packet Name

0xFF 0xFF 0xFF Reset Packet, this packet resets the streaming

interface and resets the packet alignment (just in

case a byte is missed). This packet also tells the

micro to reset the X,Y ports to 0 and the aux. port

to 0. Please note that every 0xFF after the Data

Byte 2 is considered part of the synchronization.

When a non 0xFF Byte is sent after a reset the

micro considers this byte the first byte of a new

packet. Upon being reset the micro will identify

itself as a Frame Streamer Express device by

sending the string “FSX1.X.X” where the X's are

version numbers. Version 1 is = 1.0.0. Please note

that the numbers can be multiple digits.

0x10 0x## 0x## Output Rate Setting, this packet tells the micro to

set the output rate to the 16 bit value using byte 1

and byte 2. The high byte is byte 1 and the low

byte is byte 2. This value is the number of points

per second to output. The usable range is 1000 to

30,000.

0x2# 0x## 0x## Output Point, this packet is a laser show frame

point. Byte 1 is the X DAC value. Byte 2 is the Y

DAC value. The color and blanking information is

contained in the lower nibble of the identifier Byte

= R is bit 1, G is bit 2, B is bit 3, blanking is implied

when R,G,G = 0, bit 0 is reserved and should be set

to 0.

0xE0 0x00 0x00 Send the FSX Identifier string. See the reset packet

for details.

0xF0 0x00 0x00 Reset the firmware to invoke the bootloader.

ETC… Future Packet Types

*** Any unknown packets received will result in the hardware replying with a “?”. This can

also indicate if the hardware is out of sync with the PC.

PC Interface Details

The interface on the PC side consists of a module that converts a conventional frame of

points to point packets and writes them to the virtual serial port interface. Since the

interface on the microcontroller side is based on a parallel FIFO (a type of virtual serial port

interface) the microcontroller takes care of the flow control. The microcontroller regulates

the FLOW with the point output timer. The faster the point output, the faster the

microcontroller consumes the data. A transmit buffer empty callback can be used for

notification when the write FIFO is partially emptied. When this occurs more data can be

written automatically to the port. This is the main streaming mechanism on the PC side.

The complete interface can be contained in a class object that handles all of the interface

details and simply needs to receive a complete frame. While this has been implemented on

the Windows operating system, a LINUX port is possible.

