

Asking some questions...

- Academics think security is a straightforward problem
 - JHUSI, MSSI program
 - SSH, SSL, etc.
- But in the real world: how does security get deployed?
- A great way to look at this is to examine emerging technologies

Defeating simple Immobilizers How to clone a key: 1. Scan target key, get ID number. Query? D Number

How to spend some grant money

- · Examine a few widely-deployed platforms
- Reverse-engineer devices/protocols
 Overcome physical reader limitations
 - Until we do that, we can't even determine if they have security built in
- Only problem is: we don't know anything about radios...

Determining the Protocol

- **Bad news**: Tags don't do anything until they're activated.
- Good news: We have tags, a car, and plenty of toll-booths!

DST Immobilizers

- Now we can:
 - Program a 40-bit key ("secret code") into the DST
 - · Send it a 40-bit challenge
 - · Read back the 24-bit response

Security Analysis		
Secret code	Challenge	Response
0x0000000000	0x0000000000	0x00000x
	0x2222222222	0x222222
	0x55555555555	0x555555
	0x77777777777	0x777777
	0x8888888888888888888888888888888888888	0x888888
	Охаааааааааа	0xAAAAAA
	0xDDDDDDDDDD	0xDDDDDD
	0xffffffffff	0xffffff
		Johns Hopkins University Information Security Institute

•

Security Analysis

How fast can you guess?

- More FPGAs
 - 16 x 16 million encryptions / sec.
 On average, takes 35 minutes.
 - On average, takes 35 mill
 More \$\$\$ = Faster

Security Analysis

How fast can you guess?

- Huge storage table
- RAID array storage system.
- 5,000 Gigabytes.
- Expensive (\$10-15k).
- On average, takes < 1 s.

Real World Testing

Extracting the secret passcodes

- 16 FPGAs, average time 35 min.
- Cracked Speedpasses and Immobilizer chips.

Emulating a real transponder Big, Bulky Prototype.

Small PC (\$1000). DAC Board (\$1000). UPS (\$300). Eval kit antenna (\$50). Custom software (Free).

formation Security

Real World Testing

Emulating a real transponder A 1st Generation Device (not actually built).

FPAA (\$200). FPGA (\$200). Homemade Antenna (\$0).

Real World Testing

Field Tests: (http://rfidanalysis.org)

Fixing the problem

Short-Term Fixes

- Very few
- Systems too widely deployed for simple upgrade.
- Tin foil works.
- Diligence on the part of the consumer.

Fixing the problem

Long term Fixes

- Use standard encryption algorithms.
 - AES, HMAC-SHA1, 3DES
 - No security through obscurity.
- No single-tag compromise should compromise the whole system.
 - As with the secret checksum values.
- Use longer key lengths.
 - If that is not possible, understand this limitation!

Conclusions

- Widely deployed systems offer no, or limited security
 - Solutions on the way, however
- Privacy protection (tracking) not considered
- Attacks *are* practical-- RF interface can't even stop computer scientists!

